This study explores the classification potential of a multispectral classification model for farmland with planting structures of different complexity. Unmanned aerial vehicle (UAV) remote sensing technology is used to obtain multispectral images of three study areas with low-, medium-, and high-complexity planting structures, containing three, five, and eight types of crops, respectively. The feature subsets of three study areas are selected by recursive feature elimination (RFE). Object-oriented random forest (OB-RF) and object-oriented support vector machine (OB-SVM) classification models are established for the three study areas. After training the models with the feature subsets, the classification results are evaluated using a confusion matrix. The OB-RF and OB-SVM models’ classification accuracies are 97.09% and 99.13%, respectively, for the low-complexity planting structure. The equivalent values are 92.61% and 99.08% for the medium-complexity planting structure and 88.99% and 97.21% for the high-complexity planting structure. For farmland with fragmentary plots and a high-complexity planting structure, as the planting structure complexity changed from low to high, both models’ overall accuracy levels decreased. The overall accuracy of the OB-RF model decreased by 8.1%, and that of the OB-SVM model only decreased by 1.92%. OB-SVM achieves an overall classification accuracy of 97.21%, and a single-crop extraction accuracy of at least 85.65%. Therefore, UAV multispectral remote sensing can be used for classification applications in highly complex planting structures.
An improved semantic segmentation method based on object contextual representations network (OCRNet) is proposed to accurately identify zucchinis intercropped with sunflowers from unmanned aerial vehicle (UAV) visible images taken over Hetao Irrigation District, Inner Mongolia, China. The proposed method improves on the performance of OCRNet in two respects. First, based on the object region context extraction structure of the OCRNet, a branch that uses the channel attention module was added in parallel to rationally use channel feature maps with different weights and reduce the noise of invalid channel features. Secondly, Lovász-Softmax loss was introduced to improve the accuracy of the object region representation in the OCRNet and optimize the final segmentation result at the object level. We compared the proposed method with extant advanced semantic segmentation methods (PSPNet, DeepLabV3+, DNLNet, and OCRNet) in two test areas to test its effectiveness. The results showed that the proposed method achieved the best semantic segmentation effect in the two test areas. More specifically, our method performed better in processing image details, segmenting field edges, and identifying intercropping fields. The proposed method has significant advantages for crop classification and intercropping recognition based on UAV visible images, and these advantages are more substantive in object-level evaluation metrics (mIoU and intercropping IoU).
The rapid and accurate identification of sunflower lodging is important for the assessment of damage to sunflower crops. To develop a fast and accurate method of extraction of information on sunflower lodging, this study improves the inputs to SegNet and U-Net to render them suitable for multi-band image processing. Random forest and two improved deep learning methods are combined with RGB, RGB + NIR, RGB + red-edge, and RGB + NIR + red-edge bands of multi-spectral images captured by a UAV (unmanned aerial vehicle) to construct 12 models to extract information on sunflower lodging. These models are then combined with the method used to ignore edge-related information to predict sunflower lodging. The results of experiments show that the deep learning methods were superior to the random forest method in terms of the obtained lodging information and accuracy. The predictive accuracy of the model constructed by using a combination of SegNet and RGB + NIR had the highest overall accuracy of 88.23%. Adding NIR to RGB improved the accuracy of extraction of the lodging information whereas adding red-edge reduced it. An overlay analysis of the results for the lodging area shows that the extraction error was mainly caused by the failure of the model to recognize lodging in mixed areas and low-coverage areas. The predictive accuracy of information on sunflower lodging when edge-related information was ignored was about 2% higher than that obtained by using the direct splicing method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.