Sulfur hexafluoride (SF6) is the most potent greenhouse gas regulated under the Kyoto Protocol, with a high global warming potential. In this study, SF6 emissions from China were inventoried for 1990-2010 and projected to 2020. Results reveal that the highest SF6 emission contribution originates from the electrical equipment sector (about 70%), followed by the magnesium production sector, the semiconductor manufacture sector and the SF6 production sector (each about 10%). Both agreements and discrepancies were found in comparisons of our estimates with previously published data. An accelerated growth rate was found for Chinese SF6 emissions during 1990-2010. Because the relative growth rate of SF6 emissions is estimated to be much higher than those of CO2, CH4, and N2O, SF6 will play an increasing role in greenhouse gas emissions in China. Global contributions from China increased rapidly from 0.9 ± 0.3% in 1990 to 22.8 ± 6.3% in 2008, making China one of the crucial contributors to the recent growth in global emissions. Under the examined Business-as-usual (BAU) Scenario, projected emissions will reach 4270 ± 1020 t in 2020, but a reduction of about 90% of the projected BAU emissions would be obtained under the Alternative Scenario.
The ozone layer depletion and its recovery, as well as the climate influence of ozone-depleting substances (ODSs) and their substitutes that influence climate, are of interest to both the scientific community and the public. Here we report on the emissions of ODSs and their substitute from China, which is currently the largest consumer (and emitter) of these substances. We provide, for the first time, comprehensive information on ODSs and replacement hydrofluorocarbon (HFC) emissions in China starting from 1980 based on reported production and usage. We also assess the impacts (and costs) of controls on ODS consumption and emissions on the ozone layer (in terms of CFC-11-equivalent) and climate (in CO-equivalent). In addition, we show that while China's future ODS emissions are likely to be defined as long as there is full compliance with the Montreal Protocol; its HFC emissions through 2050 are very uncertain. Our findings imply that HFC controls over the next decades that are more stringent than those under the Kigali Amendment to the Montreal Protocol would be beneficial in mitigating global climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.