The goal of our study was to raise monoclonal antibodies (mAbs) against endothelial cell-surface proteins specific for tumor vasculature. Here, we describe the generation and intensive characterization of mAb AA98, including its functional properties and its antigen identification. In our study, an enhanced mAb AA98 immunoreactivity was observed on stimulated human umbilical vein endothelial cells (HUVECs). In addition, mAb AA98 showed remarkably restricted immunoreactivity against intratumoral neovasculature compared with blood vessels of normal tissues. We identified the AA98 antigen as human CD146, an adhesion molecule belonging to the immunoglobulin superfamily. Data from in vitro experiments imply structural and signaling functions for endothelial CD146; however, the role of CD146 in vivo is largely unknown. Here, we show that mAb AA98 displays antiangiogenic properties in vitro and in vivo. Proliferation and migration of HUVECs were inhibited by mAb AA98 as was angiogenesis in chicken chorioallantoic membrane (CAM) assays and tumor growth in 3 xenografted human tumor models in mice. Our data provide new insights into the function of CD146 on endothelial cells, validate CD146 as a novel target for antiangiogenic agents, and demonstrate that mAb AA98 has potential as a diagnostic and therapeutic agent in vascular and cancer biology. (Blood. 2003;102:184-191)
The ongoing outbreak of COVID-19 that began in Wuhan, China, become an emergency of international concern when thousands of people were infected around the world. This study reports a case simultaneously infected by SARS-Cov-2 and HIV, which showed a longer disease course and slower generation of specific antibodies. This case highlights that a co-infection of SARS-Cov-2 and HIV may severely impair the immune system.
Sulfur hexafluoride (SF6) is the most potent greenhouse gas regulated under the Kyoto Protocol, with a high global warming potential. In this study, SF6 emissions from China were inventoried for 1990-2010 and projected to 2020. Results reveal that the highest SF6 emission contribution originates from the electrical equipment sector (about 70%), followed by the magnesium production sector, the semiconductor manufacture sector and the SF6 production sector (each about 10%). Both agreements and discrepancies were found in comparisons of our estimates with previously published data. An accelerated growth rate was found for Chinese SF6 emissions during 1990-2010. Because the relative growth rate of SF6 emissions is estimated to be much higher than those of CO2, CH4, and N2O, SF6 will play an increasing role in greenhouse gas emissions in China. Global contributions from China increased rapidly from 0.9 ± 0.3% in 1990 to 22.8 ± 6.3% in 2008, making China one of the crucial contributors to the recent growth in global emissions. Under the examined Business-as-usual (BAU) Scenario, projected emissions will reach 4270 ± 1020 t in 2020, but a reduction of about 90% of the projected BAU emissions would be obtained under the Alternative Scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.