Coxsackievirus B3 (CVB3) is an important human pathogen linked to cardiac arrhythmias and acute heart failure. CVB3 infection has been reported to induce the formation of autophagosomes that support the viral replication in host cells. Interestingly, our study shows that the accumulation of autophagosomes during CVB3 infection is caused by a blockage of autophagosome–lysosome fusion rather than the induction of autophagosome biogenesis. Moreover, CVB3 decreases the transcription and translation of syntaxin 17 (STX17), a SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor) protein involved in autophagosome–lysosome fusion. Overexpression of STX17 restored the autophagic flux, alleviated the virus-induced lysosomal dysfunction, and decreased the apoptosis induced by CVB3 infection in HeLa cells. Taken together, our results suggest that CVB3 infection impairs the autophagic flux by blocking autophagosome–lysosome fusion. These findings thus point to potential new therapeutic strategies targeting STX17 or autophagosome–lysosome fusion for treating CVB3-associated diseases.
BackgroundKawasaki disease (KD) is a childhood systemic vasculitis that exhibits a specific preference for the coronary arteries. The aetiology remains unknown and there are no especially diagnostic tests. microRNAs (miRNAs) are 18 to 23 nucleotides non-coding RNAs that are negative regulator of gene expression and play a crucial role in the regulatory network of the genome. Recently, circulating miRNAs have been found presentation in human plasma and displayed some characteristics of the ideal biomarker. However, few researches explored differentially expressed miRNAs in the plasma of KD patients. Our study is to identify circulating miRNAs in KD plasma which can serve as potential biomarkers of KD diagnosis.Materials and methodsThe total of five pairs of acute KD and normal plasma samples were analyzed using ABI miRNAs TLDA Assay chip. Differentially expression of miR-125a-5p in plasma were confirmed by quantitative real-time PCR (qRT-PCR) in independent cohort (acute KD = 30, convalescent KD = 30 and healthy control = 32). After bioinformatics prediction, miR-125a-5p vector and inhibitor were transfected into HUVECs respectively, to observe MKK7 expression as a potential target gene. Flow cytometry was used to analyze apoptosis. The mRNA and protein levels of desired genes including MKK7, Caspase-3, Bax and Bcl2 were detected by qRT-PCR and western blotting.ResultsEighteen miRNAs were differentially expressed in acute KD’s plasma compared with healthy control. miR-125a-5p was significantly increased in plasma of KD patients (p = 0.000), but no variation between acute and convalescent KD (p = 0.357). Moreover, the results from the gain and loss functions of miR-125a-5p in HUVECs have shown that miR-125a-5p remarkably suppressed MKK7 expression, as a novel target gene. Importantly, miR-125a-5p also induced apoptosis in HUVECs through inhibition MKK7 levels to regulate Bax/Bcl2 pathway resulting to activate Caspase-3.ConclusionOur study indicated that the circulating miR-125a-5p levels in KD’s plasma have remarkably evaluated compared with healthy individuals. miR-125a-5p might play a role in the development of KD by regulating target gene MKK7 to induce apoptosis in vascular endothelial cells. Therefore, our findings have suggested that detected miR-125a-5p levels in plasma could be used as a potential biomarker in early KD diagnosis.
Familial renal glucosuria (FRG) is a rare condition that involves isolated glucosuria despite normal blood glucose levels. Mutations in the solute carrier family 5 member 2 ( SLC5A2 ) gene, which encodes sodium-glucose cotransporter 2 (SGLT2), have been reported to be responsible for the disease. Genetic testing of the SLC5A2 gene was conducted in a Chinese family with FRG. A number of online tools were used to predict the potential effect of the identified mutations on SGLT2 function. Additionally, the SLC5A2 mutations previously reported in PubMed were summarized. A novel compound heterozygous mutation (c.514T>C, p.W172R; c.1540C>T, p.P514S) of the SLC5A2 gene in a Chinese child with FRG was identified. In total, 86 mutations of the SLC5A2 gene have been reported to be associated with FRG. The novel compound heterozygous mutation (c.514T>C, p.W172R; c.1540C>T, p.P514S) of the SLC5A2 gene may be responsible for the onset of FRG. The present study provides a starting point for further investigation of the molecular pathogenesis of the SLC5A2 gene mutation in patients with FRG.
Viral myocarditis is potentially fatal and lacking a specific treatment. Exosomes secreted by cardiac progenitor cells (CPCs) have emerged as a promising tool for cardioprotection and repair. In this study, we investigated whether CPCsderived exosomes (CPCs-Ex) could utilize the mTOR signal pathway to reduce the apoptosis in viral myocarditis. In vitro, exosomes were, respectively, added to H9C2 cells after CVB3 infection to detect the anti-apoptosis effect of CPCs-Ex. Compared with the controls, the apoptosis rate was reduced, accompanied with the depressed expression of viral capsid protein 1 (VP1) and pro-apoptosis factors of Bim/caspase families. Meanwhile, the phosphorylation of Akt, mTOR, and p70S6K were promoted, but that of 4EBP1 was suppressed. In vivo, the results of apoptosis, expression of CVB3 and pro-apoptosis factors, and phosphorylation of Akt/mTOR factors of CVB3-infected cardiomyocytes were consistent with that of vitro. Following that, we use Rapamycin and MK-2206 to inhibit the Akt/mTOR signaling pathway, meanwhile, Rattus 4EBP1, p70S6K, Akt1 and Akt2 were transfected to H9C2 cells to establish the stably transfected cell lines. In the group with Rapamycin or MK-2206 pretreatment, CPCs-Ex also could decrease the apoptosis of H9C2 cells and expression of CVB3 mRNA, followed by decreased expression of apoptosis factors. In Akt2, p70S6K and 4EBP1 overexpression groups, CPCs-Ex promoted CVB3-induced apoptosis, VP1 expression and cleavage of caspase-3. Our results therefore identify CPCs-Ex exerts an anti-apoptosis effect in CVB3-infected cells by abrogating the proliferation of CVB3 and modulating the mTOR signaling pathways as well as the expression of Bcl-2 and caspase families. Viral myocarditis, mainly caused by CVB3 infection, is lacking a specific treatment. Our study identified an antiapoptosis role of CPCs-Ex in CVB3-infected cells and rats, which shown that CPCs-Ex may be an effective tool to treat viral myocarditis. We believe that with more in-depth research on the functionality of CPCs-Ex, there will be a breakthrough in the treatment of viral myocarditis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.