Discriminative Correlation Filter (DCF) based trackers are quite efficient in tracking objects by exploiting the circulant structure. The kernel trick further improves the performance of such trackers. The unwanted boundary effects, however, are difficult to solve in the kernelized correlation models. In this paper, we propose a novel Constrained Multi-Kernel Correlation tracking Filter (CMKCF), which applies spatial constraints to address this drawback. We build the multi-kernel models for multi-channel features with three different attributes, and then employ a spatial cropping operator on the semi-kernel matrix to address the boundary effects. For the constrained optimization solution, we develop an Alternating Direction Method of Multipliers (ADMM) based algorithm to learn our multi-kernel filters efficiently in the frequency domain. In particular, we suggest an adaptive updating mechanism by exploiting the feedback from high-confidence tracking results to avoid corruption in the model. Extensive experimental results demonstrate that the proposed method performs favorably on OTB-2013, OTB-2015, VOT-2016 and VOT-2018 dataset against several state-of-the-art methods.
Corrupted labels and class imbalance are commonly encountered in practically collected training data, which easily leads to over-fitting of deep neural networks (DNNs). Existing approaches alleviate these issues by adopting a sample re-weighting strategy, which is to re-weight sample by designing weighting function. However, it is only applicable for training data containing only either one type of data biases.
In practice, however, biased samples with corrupted labels and of tailed classes commonly co-exist in training data.
How to handle them simultaneously is a key but under-explored problem. In this paper, we find that these two types of biased samples, though have similar transient loss, have distinguishable trend and characteristics in loss curves, which could provide valuable priors for sample weight assignment. Motivated by this, we delve into the loss curves and propose a novel probe-and-allocate training strategy: In the probing stage, we train the network on the whole biased training data without intervention, and record the loss curve of each sample as an additional attribute; In the allocating stage, we feed the resulting attribute to a newly designed curve-perception network, named CurveNet, to learn to identify the bias type of each sample and assign proper weights through meta-learning adaptively.
The training speed of meta learning also blocks its application.
To solve it, we propose a method named skip layer meta optimization (SLMO) to accelerate training speed by skipping the bottom layers.
Extensive synthetic and real experiments well validate the proposed method, which achieves state-of-the-art performance on multiple challenging benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.