We propose a new method for laminate stacking sequence optimization based on a two-level approximation and genetic algorithm (GA), and establish an optimization model including continuous size variables (thicknesses of plies) and discrete variables (0/1 variables that represent the existence of each ply). To solve this problem, a first-level approximate problem is constructed using the branched multipoint approximate (BMA) function. Since mixed-variables are involved in the first-level approximate problem, a new optimization strategy is introduced. The discrete variables are optimized through the GA. When calculating the fitness of each member in the population of GA, a second-level approximate problem that can be solved by the dual method is established to obtain the optimal thicknesses corresponding to the each given ply orientation sequence. The two-level approximation genetic algorithm optimization is performed starting from a ground laminate structure, which could include relatively arbitrarily discrete set of angles. The method is first applied to cylindrical laminate design examples to demonstrate its efficiency and accuracy compared with known methods. The capacity of the optimization strategy to solve more complex problems is then demonstrated using a design example. With the presented method, the stacking sequence in analytical tools can be directly taken as design variables and no intermediate variables need be adopted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.