Porous structured silicon has been regarded as a promising candidate to overcome pulverization of silicon-based anodes. However, poor mechanical strength of these porous particles has limited their volumetric energy density towards practical applications. Here we design and synthesize hierarchical carbon-nanotube@silicon@carbon microspheres with both high porosity and extraordinary mechanical strength (>200 MPa) and a low apparent particle expansion of~40% upon full lithiation. The composite electrodes of carbon-nanotube@silicon@carbon-graphite with a practical loading (3 mAh cm −2) deliver~750 mAh g −1 specific capacity, <20% initial swelling at 100% state-of-charge, and~92% capacity retention over 500 cycles. Calendered electrodes achieve~980 mAh cm −3 volumetric capacity density and <50% end-of-life swell after 120 cycles. Full cells with LiNi 1/3 Mn 1/3 Co 1/3 O 2 cathodes demonstrate >92% capacity retention over 500 cycles. This work is a leap in silicon anode development and provides insights into the design of electrode materials for other batteries.
This perspective focuses on the synthesis, characterization, and modeling of three classes of hierarchical materials with potential for sequestering radionuclides: nanoparticles, porous frameworks, and crystalline salt inclusion phases. The scientific impact of hierarchical structures and the development of the underlying crystal chemistry is discussed as laying the groundwork for the design, local structure control, and synthesis of new forms of matter with tailored properties. This requires development of the necessary scientific understanding of such complex structures through integrated synthesis, characterization, and modeling studies that can allow their purposeful creation and properties. The ultimate practical aim is to provide the means to create novel structure types that can simultaneously sequester multiple radionuclides. The result will lead to the creation of safe and efficient, long lasting waste forms for fission products and transuranic elements that are the products of nuclear materials processing waste streams. The generation of the scientific basis for working toward that goal is presented.
Pitting corrosion is one of the most destructive forms of corrosion that can lead to catastrophic failure of structures. This study presents a thermodynamically consistent phase field model for the quantitative prediction of the pitting corrosion kinetics in metallic materials. An order parameter is introduced to represent the local physical state of the metal within a metal-electrolyte system. The free energy of the system is described in terms of its metal ion concentration and the order parameter. Both the ion transport in the electrolyte and the electrochemical reactions at the electrolyte/metal interface are explicitly taken into consideration. The temporal evolution of ion concentration profile and the order parameter field is driven by the reduction in the total free energy of the system and is obtained by numerically solving the governing equations. A calibration study is performed to couple the kinetic interface parameter with the corrosion current density to obtain a direct relationship between overpotential and the kinetic interface parameter. The phase field model is validated against the experimental results, and several examples are presented for applications of the phase-field model to understand the corrosion behavior of closely located pits, stressed material, ceramic particles-reinforced steel, and their crystallographic orientation dependence. INTRODUCTIONCorrosion is the gradual destruction of materials (usually metallic materials) via chemical and/or electrochemical reaction with their environment. It costs about 3.1% of the gross domestic product (GDP) in the United States, which is much more than the cost of all natural disasters combined. Localized corrosion, such as pitting corrosion, is one of the most destructive forms of corrosion; it leads to the catastrophic failure of structures and raises both human safety and financial concerns. 1-3 Pitting corrosion of stainless steel usually occurs in two different stages: (1) pit initiation from passive film breakage 4-6 and (2) pit growth. 2,3,[7][8][9][10][11][12] In this study, we focused on the development of a phase-field modeling capability to study pit growth by considering both anodic and cathodic reactions.In the past few decades, great efforts have been made to develop numerical models for pitting corrosion. The moving interface and the electrical double layer at the metal/electrolyte interface are the two challenging problems faced by most of these numerical models. These numerical models can be divided according to the method in which a moving interface is incorporated in their models. Several steady state 9,10,13-18 and transient state 19-28 models have been developed over the years that did not allow for changes in the shape and dimensions of the pits/crevices as corrosion proceeds.Recent advances in numerical techniques, such as the finite element method, the finite volume method, the arbitrary Lagrangian-Eulerian method, the mesh-free method, and the level set method have encouraged researchers to model the evolving morphology...
Complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiated nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials. npj Computational Materials (2017) 3:16 ; doi:10.1038/s41524-017-0018-y INTRODUCTIONHigh energy particle (such as neutron, ion, and electron) radiation can create major changes in the shape and thermo-mechanical properties of nuclear fuels and structural components of nuclear reactors. These changes are caused by radiation-induced evolution of compositions and microstructures. The main effects of radiation on reactor materials are: (1) dimensional change associated with gas bubble swelling, void swelling, grain growth, and creep; 1-5 (2) loss of ductility and increase in ductile-brittle transition temperature (DBTT) due to the formation of secondphase precipitates, self-interstitial atomic (SIA) loops, and dislocation networks; 6, 7 (3) oxidation and corrosion accelerated by high temperature, fission products, and radiation damage; 8-10 and (4) local and bulk changes in chemical composition, including irradiation-enhanced segregation of alloy components and phase separation.11-17 Figure 1 shows typical microstructures observed in irradiated materials.9, 18-21 The radiation-induced heterogeneity of the microstructures depends on the initial phase and defect structure of the fresh (non-irradiated) materials and on the type and severity of the radiation environment. Fundamental understanding of heterogeneous three-dimensional microstructure evolution is crucial to the development of advanced radiation tolerant materials that can significa...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.