People tend to believe that they truly are morally good, and yet they commit moral transgressions with surprising frequency in their everyday lives. To explain this phenomenon, some theorists have suggested that people remember their moral transgressions with fewer details, lower vivacity, and less clarity, relative to their morally good deeds and other kinds of past events. These phenomenological differences are thought to help alleviate psychological discomfort and to help people maintain a morally good self-concept. Given these motivations to alleviate discomfort and to maintain a morally good self-concept, we might expect our more egregious moral transgressions, relative to our more minor transgressions, to be remembered less frequently, with fewer details, with lower vivacity, and with a reduced sense of reliving. More severe moral transgressions might also be less central to constructions of personal identity. In contrast to these expectations, our results suggest that participants' more severe moral transgressions are actually remembered more frequently, more vividly, and with more detail. More severe moral transgressions also tend to be more central to personal identity. We discuss the implications of these results for the motivation to maintain a morally good self-concept and for the functions of autobiographical memory.
Positions of power involving moral decision-making are often held by older adults (OAs). However, little is known about age differences in moral decision-making and the intrinsic organization of the aging brain. In this study, younger adults (YAs; n = 117, M age = 22.11) and OAs (n = 82, M age = 67.54) made decisions in hypothetical moral dilemmas and completed resting-state multi-echo functional magnetic resonance imaging (fMRI) scans. Relative to YAs, OAs were more likely to endorse deontological decisions (i.e., decisions based on adherence to a moral principle or duty), but only when the choice was immediately compelling or intuitive. By contrast, there was no difference between YAs and OAs in utilitarian decisions (i.e., decisions aimed at maximizing collective well-being) when the utilitarian choice was intuitive. Enhanced connections between the posterior medial core of the default network (pmDN) and the dorsal attention network, and overall reduced segregation of pmDN from the rest of the brain, were associated with this increased deontological-intuitive moral decision-making style in OAs. The present study contributes to our understanding of age differences in decision-making styles by taking into account the intuitiveness of the moral choice, and it offers further insights as to how age differences in intrinsic brain connectivity relate to these distinct moral decision-making styles in YAs and OAs.
Animals always seek rewards and the related neural basis has been well studied. However, what happens when animals fail to get a reward is largely unknown, although this is commonly seen in behaviors such as predation. Here, we set up a behavioral model of repeated failure in reward pursuit (RFRP) in Drosophila larvae. In this model, the larvae were repeatedly prevented from reaching attractants such as yeast and butyl acetate, before finally abandoning further attempts. After giving up, they usually showed a decreased locomotor speed and impaired performance in light avoidance and sugar preference, which were named as phenotypes of RFRP states. In larvae that had developed RFRP phenotypes, the octopamine concentration was greatly elevated, while tβh mutants devoid of octopamine were less likely to develop RFRP phenotypes, and octopamine feeding efficiently restored such defects. By down-regulating tβh in different groups of neurons and imaging neuronal activity, neurons that regulated the development of RFRP states and the behavioral exhibition of RFRP phenotypes were mapped to a small subgroup of non-glutamatergic and glutamatergic octopaminergic neurons in the central larval brain. Our results establish a model for investigating the effect of depriving an expected reward in Drosophila and provide a simplified framework for the associated neural basis.Electronic supplementary materialThe online version of this article (10.1007/s12264-018-0248-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.