Recently, the development of Src/Abl (c-Src/Bcr-Abl tyrosine kinases) dual inhibitors has attracted considerable attention from the research community for treatment of malignancies. In order to explore the different structural features impacting the Src and Abl inhibitory activities of N(9)-arenethenyl purines and to investigate the molecular mechanisms of ligand-receptor interactions, a molecular modeling study combining the three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations was performed. The obtained CoMFA (comparative molecular field analysis) models exhibited satisfactory internal and external predictability. The plots of the CoMFA fields could be used to investigate the structural differences between DFG-in (targeting the active enzyme conformation) and DFG-out (targeting the inactive enzyme conformation) inhibitors. The key amino acid residues were identified by docking studies, and the detailed binding modes of the compounds with different activities were determined by MD simulations. The binding free energies gave a good correlation with the experimental determined activities. In an energetic analysis, the MM-PBSA (molecular mechanics Poisson-Boltzmann surface) energy decomposition revealed that the van der Waals interactions were the major driving force for the binding of the DFG-in and DFG-out compounds to Src and Abl, especially the hydrophobic interactions between ligands and residues Ala403/380, Asp404/381, and Phe405/382 in DFG-out Src and Abl complexes. They also help to stabilize the DFG-out conformations. These results can offer useful references for designing novel potential DFG-in and DFG-out dual Src/Abl inhibitors.
P2Y receptor is an attractive target for the anti-platelet therapies, treating various thrombotic diseases. In this work, a total of 107 6-aminonicotinate-based compounds as potent P2Y antagonists were studies by a molecular modeling study combining three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations to explore the decisive binding conformations of these antagonists with P2Y and the structural features for the activity. The optimum CoMFA and CoMSIA models identified satisfactory robustness and good predictive ability, with R = .983, q = .805, [Formula: see text] = .881 for CoMFA model, and R = .935, q = .762, [Formula: see text] = .690 for CoMSIA model, respectively. The probable binding modes of compounds and key amino acid residues were revealed by molecular docking. MD simulations and MM/GBSA free energy calculations were further performed to validate the rationality of docking results and to compare the binding modes of several compound pairs with different activities, and the key residues (Val102, Tyr105, Tyr109, His187, Val190, Asn191, Phe252, His253, Arg256, Tyr259, Thr260, Val279, and Lys280) for the higher activity were pointed out. The binding energy decomposition indicated that the hydrophobic and hydrogen bond interactions play important roles for the binding of compounds to P2Y. We hope these results could be helpful in design of potent and selective P2Y antagonists.
Potent dual NF-κB/AP-1 inhibitors could effectively treat immunoinflammatory diseases. An integrated computational study was carried out to identify the most favourable binding sites, the structural features and the interaction mechanisms.
An integrated computational study was performed to identify the binding mechanisms of benzamide-based derivatives with Abl_wt/Abl_T315I kinases for designing Abl inhibitors.
Despite the efficacy of imatinib therapy in chronic myelogenous leukemia, the development of drug-resistant Abl mutants, especially the most difficult overcoming T315I mutant, makes the search for new Abl T315I inhibitors a very interesting challenge in medicinal chemistry. In this work, a multistep computational framework combining the three dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, molecular dynamics (MD) simulation and binding free energy calculation, was performed to explore the structural requirements for the Abl T315I activities of benzimidazole/benzothiazole derivatives and the binding mechanism between the inhibitors and Abl T315I. The established 3D-QSAR models exhibited satisfactory internal and external predictability. Docking study elucidated the comformations of compounds and the key amino acid residues at the binding pocket, which were confirmed by MD simulation. The binding free energies correlated well with the experimental activities. The MM-GBSA energy decomposition revealed that the van der Waals interaction was the major driving force for the interaction between the ligands and Abl T315I. The hydrogen bond interactions between the inhibitors and Met318 also played an important role in stablizing the binding of compounds to Abl T315I. Finally, four new compounds with rather high Abl T315I activities were designed and presented to experimenters for reference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.