Action observation interventions may have the potential to contribute to improved motor function in motor (re)learning settings by promoting functional activity and plasticity in the motor regions of the brain. Optimal methods for delivering such interventions, however, have yet to be established. This experiment investigated the effect on corticospinal excitability of manipulating the viewing instructions provided to participants (N = 21) prior to action observation. Specifically, motor evoked potential responses measured from the right hand muscles following single-pulse transcranial magnetic stimulation (TMS) to the left motor cortex were compared when participants were instructed to observe finger-thumb opposition movement sequences: (i) passively; (ii) with the intent to imitate the observed movement; or (iii) whilst simultaneously and actively imagining that they were performing the movement as they observed it. All three action observation viewing instructions facilitated corticospinal excitability to a greater extent than did observation of a static hand. In addition, the extent to which corticospinal excitability was facilitated was greater during combined observation and imagery, compared to passive observation. These findings have important implications for the design of action observation interventions in motor (re)learning settings, where instructions that encourage observers to simultaneously imagine themselves performing the observed movement may offer the current optimal method for improving motor function through action observation.
The concept of shared motor representations between action execution and various covert conditions has been demonstrated through a number of psychophysiological modalities over the past two decades. Rarely, however, have researchers considered the congruence of physical, imaginary and observed movement markers in a single paradigm and never in a design where eye movement metrics are the markers. In this study, participants were required to perform a forward reach and point Fitts’ Task on a digitizing tablet whilst wearing an eye movement system. Gaze metrics were used to compare behaviour congruence between action execution, action observation, and guided and unguided movement imagery conditions. The data showed that participants attended the same task-related visual cues between conditions but the strategy was different. Specifically, the number of fixations was significantly different between action execution and all covert conditions. In addition, fixation duration was congruent between action execution and action observation only, and both conditions displayed an indirect Fitts’ Law effect. We therefore extend the understanding of the common motor representation by demonstrating, for the first time, common spatial eye movement metrics across simulation conditions and some specific temporal congruence for action execution and action observation. Our findings suggest that action observation may be an effective technique in supporting motor processes. The use of video as an adjunct to physical techniques may be beneficial in supporting motor planning in both performance and clinical rehabilitation environments.
Action observation (AO) and movement imagery (MI) have been reported to share similar neural networks. This study investigated the congruency between AO and MI using the eye gaze metrics, dwell time and fixation number. A simple reach-grasp-place arm movement was observed and, in a second condition, imagined where the movement was presented from the first person perspective (1PP) and the third person perspective (3PP).Dwell time and number of fixations were calculated for whole scene and regions of interest (ROIs). For whole scene, no significant differences were found in the number of fixations for condition (AO, MI) or perspective. Dwell time, however, was significantly longer in AO than MI. For ROIs, the number of fixations was significantly greater in 1PP than 3PP. The data provide support for congruence between motor simulation states but also indicate some functional differences.
The aim of this paper is to provide a review of eye movements during action execution, action observation, and movement imagery. Furthermore, the paper highlights aspects of congruency in gaze metrics between these states. The implications of the imagery, observation, and action gaze congruency are discussed in terms of motor learning and rehabilitation. Future research directions are outlined in order to further the understanding of shared gaze metrics between overt and covert states. Suggestions are made for how researchers and practitioners can structure action observation and movement imagery interventions to maximize (re)learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.