Protein kinase GCN2 is a multidomain protein that contains a region homologous to histidyl-tRNA synthetases juxtaposed to the kinase catalytic moiety. Previous studies have shown that in response to histidine starvation, GCN2 phosphorylates eukaryotic initiation factor 2 (eIF-2), to induce the translational expression of GCN4, a transcriptional activator of genes subject to the general amino acid control. It was proposed that the synthetase-related sequences of GCN2 stimulate the activity of the kinase by interacting directly with uncharged tRNA that accumulates during amino acid limitation. In addition to histidine starvation, expression of GCN4 is also regulated by a number of other amino acid limitations. Questions that we posed in this report are whether uncharged tRNA is the most direct regulator of GCN2 and whether the function of this kinase is required to recognize each of the different amino acid starvation signals. We show that GCN2 phosphorylation of eIF-2, and the resulting general amino acid control pathway, is stimulated in response to starvation for each of several different amino acids, in addition to histidine limitation. Cells containing a defective aminoacyltRNA synthetase also stimulated GCN2 phosphorylation of eIF-2 in the absence of amino acid starvation, indicating that uncharged tRNA levels are the most direct regulator of GCN2 kinase. Using a Northwestern blot (RNA binding) assay, we show that uncharged tRNA can bind to the synthetase-related domain of GCN2. Mutations in the motif 2 sequence conserved among class II synthetases, including histidyl-tRNA synthetases, impair the ability of this synthetase-related domain to bind tRNA and abolish GCN2 phosphorylation of eIF-2 required to stimulate the general amino acid control response. These in vivo and in vitro experiments indicate that synthetase-related sequences regulate GCN2 kinase function by monitoring the levels of multiple uncharged tRNAs that accumulate during amino acid limitations.
In response to environmental stress, cells induce a program of gene expression designed to remedy cellular damage or, alternatively, induce apoptosis. In this report, we explore the role of a family of protein kinases that phosphorylate eukaryotic initiation factor 2 (eIF2) in coordinating stress gene responses. We find that expression of activating transcription factor 3 (ATF3), a member of the ATF/CREB subfamily of basic-region leucine zipper (bZIP) proteins, is induced in response to endoplasmic reticulum (ER) stress or amino acid starvation by a mechanism requiring eIF2 kinases PEK (Perk or EIF2AK3) and GCN2 (EIF2AK4), respectively. Increased expression of ATF3 protein occurs early in response to stress by a mechanism requiring the related bZIP transcriptional regulator ATF4. ATF3 contributes to induction of the CHOP transcriptional factor in response to amino acid starvation, and loss of ATF3 function significantly lowers stress-induced expression of GADD34, an eIF2 protein phosphatase regulatory subunit implicated in feedback control of the eIF2 kinase stress response. Overexpression of ATF3 in mouse embryo fibroblasts partially bypasses the requirement for PEK for induction of GADD34 in response to ER stress, further supporting the idea that ATF3 functions directly or indirectly as a transcriptional activator of genes targeted by the eIF2 kinase stress pathway. These results indicate that ATF3 has an integral role in the coordinate gene expression induced by eIF2 kinases. Given that ATF3 is induced by a very large number of environmental insults, this study supports involvement of eIF2 kinases in the coordination of gene expression in response to a more diverse set of stress conditions than previously proposed.
Nuclear factor B (NF-B) serves to coordinate the transcription of genes in response to diverse environmental stresses. In this report we show that phosphorylation of the ␣ subunit of eukaryotic initiation factor 2 (eIF2) is fundamental to the process by which many stress signals activate NF-B. Phosphorylation of this translation factor is carried out by a family of protein kinases that each respond to distinct stress conditions. During impaired protein folding and assembly in the endoplasmic reticulum (ER), phosphorylation of eIF2␣ by PEK (Perk or EIF2AK3) is essential for induction of NF-B transcriptional activity. The mechanism by which NF-B is activated during ER stress entails the release, but not the degradation, of the inhibitory protein IB. During amino acid deprivation, phosphorylation of eIF2␣ by GCN2 (EIF2AK4) signals the activation of NF-B. Furthermore, inhibition of general translation or transcription by cycloheximide and actinomycin D, respectively, elicits the eIF2␣ phosphorylation required for induction of NF-B. Together, these studies suggest that eIF2␣ kinases monitor and are activated by a range of stress conditions that affect transcription and protein synthesis and assembly, and the resulting eIF␣ phosphorylation is central to activation of the NF-B. The absence of NF-B-mediated transcription and its antiapoptotic function provides an explanation for why eIF2␣ kinase deficiency in diseases such as Wolcott-Rallison syndrome leads to cellular apoptosis and disease.
The GCN2 eIF2␣ kinase is essential for activation of the general amino acid control pathway in yeast when one or more amino acids become limiting for growth. GCN2's function in mammals is unknown, but must differ, since mammals, unlike yeast, can synthesize only half of the standard 20 amino acids. To investigate the function of mammalian GCN2, we have generated a Gcn2 ؊/؊ knockout strain of mice. Gcn2 ؊/؊ mice are viable, fertile, and exhibit no phenotypic abnormalities under standard growth conditions. However, prenatal and neonatal mortalities are significantly increased in Gcn2 ؊/؊ mice whose mothers were reared on leucine-, tryptophan-, or glycine-deficient diets during gestation. Leucine deprivation produced the most pronounced effect, with a 63% reduction in the expected number of viable neonatal mice. Cultured embryonic stem cells derived from Gcn2 ؊/؊ mice failed to show the normal induction of eIF2␣ phosphorylation in cells deprived of leucine. To assess the biochemical effects of the loss of GCN2 in the whole animal, liver perfusion experiments were conducted. Histidine limitation in the presence of histidinol induced a twofold increase in the phosphorylation of eIF2␣ and a concomitant reduction in eIF2B activity in perfused livers from wild-type mice, but no changes in livers from Gcn2 ؊/؊ mice.
This study shows that the eIF2 kinase PERK is required not only for translational control but also for activation of ATF6 and its target genes in the unfolded protein response. The PERK pathway facilitates both the synthesis of ATF6 and trafficking of ATF6 from the endoplasmic reticulum to the Golgi for intramembrane proteolysis and activation of ATF6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.