Estuaries are biologically productive transition zones between land and sea that play a vital role in transforming, recycling, and sequestering nutrients and organic matter, thus influencing nutrient loading to coastal systems. Yet, the processes involved in phosphorus (P) transformation and cycling among inorganic and organic P forms are poorly known in estuaries. To better understand the potential for P transformation and sequestration, we identified P forms and estimated their contributions to total P in intertidal wetland sediments of a river-dominated estuary (Columbia River, Oregon, USA) using solution 31 P nuclear magnetic resonance spectroscopy (P-NMR). Inorganic P forms dominated sediment P extracts throughout the estuary, with orthophosphate accounting for 71-84% of total extracted P. However, biologically-derived inorganic and organic P forms were also detected. Polyphosphates were found in sediment extracts throughout the estuary, contributing as much as 10% of extracted P. Similar to other wetlands, orthophosphate monoesters and diesters made approximately equal contributions (∼ 20%) to total extracted P. However, monoesters (e.g., phytate) were more abundant in sedimentary environments characterized by low organic matter content, while diesters (e.g., DNA) were more abundant in sedimentary environments with high organic matter, regardless of salinity. Collectively, the data show strong evidence for P transformation in sediments of a large, river-dominated estuary, which influences its transport to the coastal Pacific Ocean via the expansive Columbia River plume.
Summary Enhanced biological phosphorus removal (EBPR) exploits the metabolism of polyphosphate‐accumulating organisms (PAOs) to remove excess phosphorus (P) from wastewater treatment. Candidatus Accumulibacter phosphatis (Accumulibacter) is the most abundant and well‐studied PAO in EBPR systems. In a previous study, we detected polyphosphates throughout peripheral bay sediments, and hypothesized that an estuary is an ideal setting to evaluate PAOs in a natural system, given that estuaries are characterized by dynamic dissolved oxygen fluctuations that potentially favour PAO metabolism. We detected nucleotide sequences attributable to Accumulibacter (16S rRNA, ppk1) in sediments within three peripheral bays of the Columbia River estuary at abundances rivalling those observed in conventional wastewater treatment plants (0.01%–2.6%). Most of the sequences attributable to Accumulibacter were Type I rather than Type II, despite the fact that the estuary does not have particularly high nutrient concentrations. The highest diversity of Accumulibacter was observed in oligohaline peripheral bays, while the greatest abundances were observed at the mouth of the estuary in mesohaline sediments in the spring and summer. In addition, an approximately 70% increase in polyphosphate concentrations observed at one of the sites between dawn and dusk suggests that PAOs may play an important role in P cycling in estuary sediments.
As the extent of secondary forests continues to expand throughout the tropics, there is a growing need to better understand the ecosystem services, including carbon (C) storage provided by these ecosystems. Despite their spatial extent, there are limited data on how the ecosystem services provided by secondary forest may be enhanced through the restoration of both ecological and agroecological functions in these systems. This study quantifies the above- and below-ground C stocks in a non-native secondary forest in Hawaiʻi where a community-based non-profit seeks to restore a multi-strata agroforestry system for cultural and ecological benefits. For soil C, we use the equivalent soil mass method both to estimate stocks and examine spatial heterogeneity at high resolution (eg. sub 5 m) to define a method and sampling design that can be replicated to track changes in C stocks on-site and elsewhere. The assessed total ecosystem C was ~388.5 Mg C/ha. Carbon stock was highest in trees (~192.4 Mg C/ha; ~50% of total C); followed by soil (~136.4 Mg C/ha; ~35% of total C); roots (~52.7 Mg C/ha; ~14% of total C); and was lowest in coarse woody debris (~4.7 Mg C/ha; ~1% of total C) and litter (~2.3 Mg C/ha; <1% of total C). This work provides a baseline carbon assessment prior to agroforest restoration that will help to better quantify the contributions of secondary forest transitions and restoration efforts to state climate policy. In addition to the role of C sequestration in climate mitigation, we also highlight soil C as a critical metric of hybrid, people-centered restoration success given the role of soil organic matter in the production of a suite of on- and off-site ecosystem services closely linked to local sustainable development goals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.