A new biosorbent containing vinylsulphonic acid and 2-acryloamido-2-methyl-1-propanesulphonic acid in the presence of magnetic nanoparticles, iron (III) oxide, grafted to carboxymethylcellulose sodium salt P(VSA/AMPSO3H/MNPs)-g-CMC bionanocomposite material (BNC) has been synthesized by γ radiation induced grafting copolymerization technique. The effect of comonomer, crosslinker, CMC concentration and the absorbed dose (kGy) on the grafting efficiency and swelling degree was studied. The BNC has been successfully synthesized and the structure of the prepared BNC was confirmed by Fourier transform infrared (FTIR), thermal analysis (TGA and DTA), X-ray powder diffraction (XRD), high-resolution 1H NMR spectroscopy and scanning electron microscopy (SEM) micrograph. Batch studies relevant to adsorption of Cs-137 and Sr-90 from the reactor actual liquid waste samples by the BNC were performed as a function of contact time, solution pH, metal ion concentration, and temperature in simulation studies using the γ emitting isotopes Cs-134 and Sr-85 as representatives of Cs-137 and Sr-90, respectively. Those studies were used to find out the best conditions for isolation of Cs-137 and Sr-90 from reactor actual liquid waste. The isotherms and kinetics were analyzed using different models at 25 °C. The maximum capacity of BNC was found to be 297 and 330 mg g−1 for Cs(I) and Sr(II) metal ions, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.