The present article describes preparation, optimization, and characterization of pectin grafted polyvinylpyrrolidone hydrogels followed by controllable theophylline drug release. The gels were prepared in the presence of N,N 0 -methylenebisacrylamide (MBAA) crosslinker and ceric ammonium nitrate (CAN) initiator under N 2 atmosphere. Optimum conditions, in terms of percent of grafting (%G), were determined as follows:
The aim of this study was to characterize a buccal mucoadhesive film using lidocaine and its hydrochloride salt (LDHCL) as a model drug. Buccal films were developed using carbopol 971P as a mucoadhesive polymer, and glycerol as a plasticizer. Scanning Electron Microscope, Differential Scanning Calorimetry, X-ray powder diffraction, and Fourier Transform Infra Red techniques were used to characterize the mucoadhesive films. Bioadhesive properties were evaluated using the Universal Instron Instrument with chicken pouch as a model tissue. LDHCL and its base were present in carbopol 971P films in a molecular dispersion state without exerting any effect on the glass transition of these films. The mucoadhesive force between the chicken pouches and the film containing glycerol did not change by time during the tested period (1-20 min), while increased with increasing the amount of glycerol (10-40% w/w of polymer content). Furthermore, a linear increase in the mucoadhesive force was accompanied by the increase in the film thickness, while a linear decrease followed by plateau was obtained when loading the patch with LDHCL at concentration above 1 mg/cm(2). Loading carbopol film with lidocaine base, in a concentration up to 6 mg/cm(2) decreased linearly the mucoadhesive properties, which could be attributed to salt formation between the acidic carboxylic moiety of carbopol and basic lidocaine.
Systematic experimental work is required to improve knowledge related to the use of oily delivery systems. This work aimed to examine the influence of different molecular weights chitosan on formation and solubilization ability of w/o system of Labrasol, Plurol Oleique, water and oleic acid. Phase diagrams were constructed. Size measurements were performed for each surfactant in oleic acid. Interfacial tension of chitosan was measured between oleic acid and water at pH 1.5 and 6.25. Effect of chitosan on microemulsion size was studied. When used to deliver rh-insulin to diabetic rats, the mixture showed reduction in blood glucose compared to control.
The aim of this study was to develop a controlled release buccal mucoadhesive delivery system for systemic delivery of lidocaine hydrochloride as a model drug. In vitro release and buccal permeation as well as in vivo permeation of LDHCL patches were evaluated. The drug release and the permeability of the drug through porcine buccal mucosa were evaluated using Franz diffusion cell. In vivo evaluation of patches was carried out on rabbits as an animal model. Patches were designed in two fashions, bi-layer (BLP; LDHCL, carbopol, glycerin, pentration enhancer, and Tween 20 as the first layer; and EVA as the second layer) and triple layer (TLP; LDHCL, carbopol and glycerin as the first layer; carbopol, glycerin, pentration enhancer and pluronic F-127 as the middle layer; and EVA as the third layer) patches, respectively. Presence of oleic acid as PE in the formulation significantly enhanced the in vitro permeability of LDHCL (p<0.05), while propylene glycol monolaurate as PE suppressed it (p<0.05). The in vivo evaluation in rabbits showed that TLP had significantly higher Cmax and AUC0-8 (p<0.05) than BLP. Furthermore, TLP showed a well-controlled drug plasma concentration over 6 hr which was significantly longer than BLP (p<0.05). Patches were well adhered to buccal mucosa of the rabbits over the 8-hr study period. It was postulated that the hypothetical release mechanism of the drug and oleic acid from TLP was controlled by their diffusion through the swollen polymer network and micelled gel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.