The adoption and maintenance of physical activity are critical foci for blood glucose management and overall health in individuals with diabetes and prediabetes. Recommendations and precautions vary depending on individual characteristics and health status. In this Position Statement, we provide a clinically oriented review and evidencebased recommendations regarding physical activity and exercise in people with type 1 diabetes, type 2 diabetes, gestational diabetes mellitus, and prediabetes.Physical activity includes all movement that increases energy use, whereas exercise is planned, structured physical activity. Exercise improves blood glucose control in type 2 diabetes, reduces cardiovascular risk factors, contributes to weight loss, and improves well-being (1,2). Regular exercise may prevent or delay type 2 diabetes development (3). Regular exercise also has considerable health benefits for people with type 1 diabetes (e.g., improved cardiovascular fitness, muscle strength, insulin sensitivity, etc.) (4). The challenges related to blood glucose management vary with diabetes type, activity type, and presence of diabetes-related complications (5,6). Physical activity and exercise recommendations, therefore, should be tailored to meet the specific needs of each individual. TYPES AND CLASSIFICATIONS OF DIABETES AND PREDIABETESPhysical activity recommendations and precautions may vary by diabetes type. The primary types of diabetes are type 1 and type 2. Type 1 diabetes (5%-10% of cases) results from cellular-mediated autoimmune destruction of the pancreatic b-cells, producing insulin deficiency (7). Although it can occur at any age, b-cell destruction rates vary, typically occurring more rapidly in youth than in adults. Type 2 diabetes (90%-95% of cases) results from a progressive loss of insulin secretion, usually also with insulin resistance. Gestational diabetes mellitus occurs during pregnancy, with screening typically occurring at 24-28 weeks of gestation in pregnant women not previously known to have diabetes. Prediabetes is diagnosed when blood glucose levels are above the normal range but not high enough to be classified as diabetes; affected individuals have a heightened risk of developing type 2 diabetes (7) but may prevent/delay its onset with physical activity and other lifestyle changes (8). TYPES OF EXERCISE AND PHYSICAL ACTIVITYAerobic exercise involves repeated and continuous movement of large muscle groups (9). Activities such as walking, cycling, jogging, and swimming rely primarily on aerobic energy-producing systems. Resistance (strength) training includes exercises with free weights, weight machines, body weight, or elastic resistance bands. Flexibility exercises improve range of motion around joints (10). Balance exercises benefit gait and prevent falls (11). Activities like tai chi and yoga combine flexibility, balance, and resistance activities.
Although physical activity (PA) is a key element in the prevention and management of type 2 diabetes, many with this chronic disease do not become or remain regularly active. High-quality studies establishing the importance of exercise and fitness in diabetes were lacking until recently, but it is now well established that participation in regular PA improves blood glucose control and can prevent or delay type 2 diabetes, along with positively affecting lipids, blood pressure, cardiovascular events, mortality, and quality of life. Structured interventions combining PA and modest weight loss have been shown to lower type 2 diabetes risk by up to 58% in high-risk populations. Most benefits of PA on diabetes management are realized through acute and chronic improvements in insulin action, accomplished with both aerobic and resistance training. The benefits of physical training are discussed, along with recommendations for varying activities, PA-associated blood glucose management, diabetes prevention, gestational diabetes mellitus, and safe and effective practices for PA with diabetes-related complications.
No abstract
Regional fat distribution is an important determinant of insulin resistance in obesity. In the current study, the relationship between skeletal muscle insulin sensitivity, mid-thigh muscle composition, and the metabolic profile of muscle was investigated. Muscle composition was assessed by computed tomography of the mid-thigh, and by activities of marker enzymes of aerobic-oxidative and glycolytic pathways and muscle fiber typing using biopsies of the vastus lateralis muscle. Muscle with reduced Hounsfield attenuation on computed tomography scans was increased in proportion to obesity, and was strongly related to insulin resistance, reduced muscle oxidative capacity, and increased anaerobic and glycolytic capacities by muscle. These findings suggest that as part of its expression of insulin resistance, skeletal muscle of obese individuals is also poorly equipped for substrate oxidation and manifests increased storage of fat.
Visceral obesity is strongly associated with insulin resistance. One potential cause is increased availability of FFA. Alternatively, it has been proposed that there is impaired oxidation of lipid in individuals at risk for obesity. The extent to which either concept involves skeletal muscle is uncertain. To examine these opposing hypotheses, 17 healthy lean and obese premenopausal women, among whom cross-sectional area of visceral fat ranged from 18 to 180 cm2, participated in leg balance studies for measurement of FFA and glucose utilization during basal and insulin-stimulated conditions. A metabolic profile of skeletal muscle, based on enzyme activity, was determined in vastus lateralis muscle obtained by percutaneous biopsy. Visceral fat content was negatively correlated with insulin sensitivity (rates of leg glucose uptake and storage), but insulin resistance was not caused by glucose-FFA competition. During hyperinsulinemia, neither leg FFA uptake nor oxidation was increased in women with visceral obesity. During fasting conditions, however, rates of FFA uptake across the leg were negatively correlated with visceral adiposity as were activities of muscle carnitine palmitoyl transferase and citrate synthase. In summary, visceral adiposity is clearly associated with skeletal muscle insulin resistance but this is not due to glucose-FFA substrate competition. Instead, women with visceral obesity have reduced postabsorptive FFA utilization by muscle. (J. Clin. Invest. 1995Invest. . 95:1846Invest. -1853.) Key words: visceral obesity insulin resistance * human skeletal muscle * free fatty acid metabolism * carnitine palmitoyl transferase
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.