Our aim was to identify the biochemical defect responsible for the inability of highly growth autonomous human tumor cells to proliferate in culture medium devoid of methionine, but containing homocysteine and 5-methyletrahydrofolic acid. We have adopted the terms "homocysteine-responsive" and "homocysteine-nonresponsive" to describe cells which can or cannot proliferate in methionine-free homocysteine-supplemented medium. Using a panel of genetically related homocysteine-responsive and -nonresponsive human melanoma cell lines, the results from a number of experiments indicate that acquisition of the "homocysteine-nonresponsive phenotype" is associated with the reduced intracellular accumulation of methyl-cobalamin, a critical cofactor of the methionine synthase enzyme. When in vitro methionine synthase assays were performed in the presence of exogenously added methyl-cobalamin, specific methionine synthase activity in extracts obtained from homocysteine-responsive cells was only twofold greater than that observed with extracts prepared from homocysteine-nonresponsive cells. However, when exogenous methyl-cobalamin was omitted from the enzyme assays, methionine synthase activity in extracts derived from homocysteine-nonresponsive cells was dramatically reduced, compared with the small decrease observed with homocysteine-responsive cell extracts. Compared with their homocysteine-responsive counterparts, homocysteine-nonresponsive cells exhibited increased levels of cobalamin efflux and decreased intracellular accumulation of methyl-cobalamin. There was a clear relationship between the abilities of these related melanoma cell lines to proliferate in methionine-free homocysteine-supplemented medium, and the extent of cobalamin loss and capacity of exogenously added methyl-cobalamin to stimulate in vitro methionine synthase activity. These results indicate a link between alterations in the intracellular trafficking and/or metabolism of cobalamin and the increased growth autonomy of human melanoma cells.
Our aim was to determine if the selection of human tumor cells with enhanced anchorage-independent growth capacity was associated with alterations in methionine auxotrophy. Cells with an increased ability to form colonies on soft agarose were selected from human melanoma (MeWo) and neuroepithelioma (SK-N-MC) cell lines. In contrast to their respective parental lines, a high proportion of the agarose-selected variants were completely unable to proliferate in methionine-free medium containing its immediate precursor homocysteine. The variants exhibited no significant change in their total DNA 5-methylcytosine content and showed no stimulation of either RNA or DNA synthesis upon the addition of homocysteine when the cells were cultured in methionine-free medium. These variants were unable to synthesize [3H]S-adenosylmethionine from [3H]adenine and homocysteine. The failure to detect the accumulation of [3H]S-adenosylmethionine in these variant lines was not likely due to the enhanced turnover of S-adenosylmethionine but rather to a reduced ability to synthesize methionine from homocysteine and 5-methyltetrahydrofolic acid. These results support our hypothesis that alterations in the metabolism of methionine and/or intracellular transmethylating activities may contribute to, or be associated with, the autonomous growth of malignant human tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.