In this study, 21 microsatellite markers were used to genotype 196 Egyptian local chickens obtained from Fayoumi (n = 35), Dandarawy (n = 30), Baladi (n = 29), Sinai (n = 30), El-Salam (n = 36), and Golden Montazah (n = 36) strains. The results were compared to two pure commercial chicken populations reared in Japan-White Leghorn (n = 42) and Rhode Island Red (n = 43). A total of 162 alleles were observed, with an average of 7.7 alleles per locus. The average expected heterozygosity for the Egyptian chickens was 0.595. The closest pairwise Nei’s genetic distance was recorded between Sinai and Golden Montazah (0.038) and the smallest pairwise FST value (0.006) was observed between Baladi and Sinai. The most probable structure clustering of the eight studied populations was at K = 6. Baladi, Sinai and Golden Montazah strains were clustered together forming admixed mosaic cluster. Dandarawy ranked firstly and contributed the most to aggregate genetic diversity based on two prioritization methods. The information resulting from this study may be used as an initial guide to design further investigations for development of sustainable genetic improvement and conservation programs for the Egyptian chicken genetic resources
Mucin-1 (MUC1) is a highly attractive antigenic target for anticancer vaccines. Naturally existing MUC1 can contain multiple types of O-linked glycans, including the Thomsen–Friedenreich (Tf) antigen and the Sialyl Thomsen-nouveau (STn) antigen. In order to target these antigens as potential anticancer vaccines, MUC1 glycopeptides SAPDT*RPAP (T* is the glycosylation site) bearing the Tf and the STn antigen, respectively, have been synthesized. The bacteriophage Qβ carrier is a powerful carrier for antigen delivery. The conjugates of MUC1-Tf and -STn glycopeptides with Qβ were utilized to immunize immune-tolerant human MUC1 transgenic (MUC1.Tg) mice, which elicited superior levels of anti-MUC1 IgG antibodies with titers reaching over 2 million units. The IgG antibodies recognized a wide range of MUC1 glycopeptides bearing diverse glycans. Antibodies induced by Qβ-MUC1-Tf showed strongest binding, with MUC1-expressing melanoma B16-MUC1 cells, and effectively killed these cells in vitro. Vaccination with Qβ-MUC1-Tf first followed by tumor challenge in a lung metastasis model showed significant reductions of the number of tumor foci in the lungs of immunized mice as compared to those in control mice. This was the first time that a MUC1-Tf-based vaccine has shown in vivo efficacy in a tumor model. As such, Qβ-MUC1 glycopeptide conjugates have great potential as anticancer vaccines.
Pigeons (Columba livia) have long history of selective breeding for many purposes; one of them is pigeon racing using their homing ability. A total of 221 pigeon samples were sequenced for lactate dehydrogenase-A gene (LDH-A) including part of exon 5 and part of exon 6 and intervening intron 5. Six polymorphic sites were identified in intron 5; one indel and five SNPs. Statistical significant differences in allele frequencies were observed for 595bp and 600bp alleles between homing and non-homing groups in both Japanese and Egyptian pigeons. The frequency of 600bp allele was higher in both Japanese and Egyptian homing than in non-homing pigeons (P<0.0001). In Japanese pigeons; significant difference in allele frequency of three SNPs was observed between homing and non-homing groups, while in Egyptian pigeons, although similar tendency was observed, the difference in allele frequency was not significant. The DNA polymorphisms of pigeon LDH-A gene can be a potential genetic marker for homing ability in racing pigeon breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.