Spatial and visual connectivity are important metrics when developing workplace layouts. Calculating those metrics in real time can be difficult, depending on the size of the floor plan being analysed and the resolution of the analyses. This article investigates the possibility of considerably speeding up the outcomes of such computationally intensive simulations by using machine learning to create models capable of identifying the spatial and visual connectivity potential of a space. To that end, we present the entire process of investigating different machine learning models and a pipeline for training them on such task, from the incorporation of a bespoke spatial and visual connectivity analysis engine through a distributed computation pipeline, to the process of synthesizing training data and evaluating the performance of different neural networks.
We describe the development and use of a new conceptual design system, called SandBOX, which combines a range of intuitive interfaces with real-time analysis, thus enabling a wide variety of users to develop performative concept designs. We show how this interactive design platform can overcome some of the limitations of current physical model-based design processes, whilst retaining many of their advantages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.