This paper presents a new approach for designing a Fuzzy Logic Controller "FLC"for a dynamically multivariable nonlinear coupling system. The conventional controller with constant gains for different operating points may not be sufficient to guarantee satisfactory performance for Robot manipulator. The Fuzzy Logic Controller utilizes the error and the change of error as fuzzy linguistic inputs to regulate the system performance. The proposed controller have been developed to simulate the dynamic behavior of A Two-Link Functional Manipulator. The new controller uses only the available information of the inputoutput for controlling the position and velocity of the robot axes of the motion of the end effectors KEYWORDS
The impetus for this paper is the development of Fuzzy Basis Function "FBF" that assigns in an optimal fashion, a function approximation for a nonlinear dynamic system. A fuzzy basis function is applied to find the best location of the characteristic points by specifying the set of fuzzy rules. The advantage of this technique is that, it may produce a simple and well-performing system because it selects the most significant fuzzy basis functions to minimize an objective function in the output error for the fuzzy rules. The fuzzy basis function is a linguistic fuzzy IF_THEN rule. It provides a combination of the numerical information and the linguistic information in the form input-output pairs and in the form of fuzzy rules. The proposed control scheme is applied to a magnetic ball suspension system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.