The current research on concrete and cementitious materials focuses on finding sustainable solutions to address critical issues, such as increased carbon emissions, or corrosion attack associated with reinforced concrete structures. Geopolymer concrete is considered to be an eco-friendly alternative due to its superior properties in terms of reduced carbon emissions and durability. Similarly, the use of fibre-reinforced polymer (FRP) bars to address corrosion attack in steel-reinforced structures is also gaining momentum. This paper investigates the bond performance of a newly developed self-compacting geopolymer concrete (SCGC) reinforced with basalt FRP (BFRP) bars. This study examines the bond behaviour of BFRP-reinforced SCGC specimens with variables such as bar diameter (6 mm and 10 mm) and embedment lengths. The embedment lengths adopted are 5, 10, and 15 times the bar diameter (db), and are denoted as 5 db, 10 db, and 15 db throughout the study. A total of 21 specimens, inclusive of the variable parameters, are subjected to direct pull-out tests in order to assess the bond between the rebar and the concrete. The result is then compared with the SCGC reinforced with traditional steel bars, in accordance with the ACI 440.3R-04 and CAN/CSA-S806-02 guidelines. A prediction model for bond strength has been proposed using artificial neural network (ANN) tools, which contributes to the new knowledge on the use of Basalt FRP bars as internal reinforcement in an ambient-cured self-compacting geopolymer concrete.
Marine environments are widely addressed as a serious threat to coastal concrete structures due to higher repair and rehabilitation costs. The rising concerns of climate change and related issues also require marine structures to be resilient and sustainable at the same time. Geopolymer concrete has been given more significant consideration as an alternative, reporting better resistance to harsh and hazardous environmental exposure, including sulphate attacks, chloride attacks, and freeze–thaw climates. This study investigated the mechanical properties of fly ash (FA) and ground granulated blast furnace slag (GGBFS)-based self-compacting geopolymer concrete (SCGC), subjected to short term ambient and marine curing conditions. The mechanical performance, inclusive of compressive strength, tensile strength, and modulus of elasticity under three-month marine exposure compared to an ambient environment, indicates that the SCGC mix offered an increase in strength. It is reported that the compressive strength of SCGC increased to the range of 50 MPa after marine exposure in comparison to the 40 MPa strength after 28-day curing. A similar increase in indirect tensile strength and modulus of elasticity were observed for the test specimens, with no signs of leaching of salts under marine exposure. Thus, the current SCGC acts as a sustainable construction material in counteracting the threats of marine degradation in civil structural components.
Lightweight modular construction has become an increasing need to meet the housing requirements around the world today. The benefits of modular construction ranging from rapid production, consistency in quality, sustainability, and ease of use have widened the scope for the construction of residential, commercial, and even emergency preparedness facilities. This study introduces novel floor panels that can be flat-packed and built into modular housing components on-site with minimal labour and assistance. The flooring system uses hollow cellular panels made of various configurations of trapezoidal steel sheets. The structural performance of three different configurations of these hollow flooring systems as a modular component is presented in this study by analysing the failure modes, load-displacement parameters, and strain behaviour. The study confirms significant advantages of the proposed hollow floor systems, with multi-cells reporting higher load-carrying capacity. The hollow flooring system performed well in terms of structural performance and ease in fabrication as opposed to the conventional formworks and commercial temporary flooring systems. The proposed flooring system promises efficient application as working platforms or formworks in temporary infrastructural facilities and emergency construction activities.
The environmental concerns regarding the production of the most widely consumed cement construction material have led to the need for developing sustainable alternatives. Using recycled industry waste products such as fly ash and slag via geopolymerisation has led to the development of geopolymer cement—an efficient replacement for ordinary Portland cement (OPC). Adopting geopolymer cement and concrete as a construction material reduces greenhouse gas and promotes the recycling of waste products. This study explores the suitability of a unique geopolymer concrete mix made of recycled cementitious materials including industry waste products such as fly ash, micro fly ash and slag for use in aggressive environments. Sorptivity tests are conducted to assess the durability of concrete and indicate the cementitious material’s ability to transmit water through the capillary forces. This study thus reports on the sorptivity characteristics of a newly developed self-compacting geopolymer concrete and two other fibre geopolymer concrete mixes containing 1% (by weight) of 12 mm- or 30 mm-long basalt fibres. The addition of basalt fibres indicated less water absorption and moisture ingress than the mix without fibres. The study used 18 specimens from three geopolymer concrete mixes, and the results showed that adding fibres improved the durability performance in terms of resistance to moisture ingress. Finally, an artificial neural network model is developed to predict the absorption rates of geopolymer concrete specimens using MATLAB. The prediction models reported excellent agreement between experimental and simulated datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.