Background: Because CHARGE syndrome is characterized by high clinical variability, molecular confirmation of the clinical diagnosis is of pivotal importance. Most patients have a pathogenic variant in the CHD7 gene; however, variants are distributed throughout the gene and most cases are due to de novo mutations. Often, assessing the pathogenetic effect of a variant can be challenging, requiring the design of a unique assay for each specific case.Method: Here we describe a new CHD7 intronic variant, c.5607+17A>G, identified in two unrelated patients. In order to characterize the molecular effect of the variant, minigenes were constructed using exon trapping vectors.Results: The experimental approach pinpoints the pathogenetic effect of the variant on CHD7 gene splicing, subsequently confirmed using cDNA synthetized from RNA extracted from patient lymphocytes. Our results were further corroborated by the introduction of other substitutions at the same nucleotide position, showing that c.5607+17A>G specifically alters splicing possibly due to the generation of a recognition motif for the recruitment of a splicing effector.Conclusion: Here we identify a novel pathogenetic variant affecting splicing, and we provide a detailed molecular characterization and possible functional explanation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.