Sheshop is a business activity engaged in the field of hamper making services. Since the last 2 (two) years, sales transactions in Sheshop have been increasing, the transaction data is only used as a report and is not used to regulate business strategies. The transaction data should be used to see the attachment of each type of product purchased by the customer simultaneously. The amount of sales transaction data on Sheshop can be used as an analysis of customer behavior in making purchases of hampers at Sheshop. This study performs data analysis by implementing the Apriori algorithm method because this algorithm handles data mining processes quickly on large amounts of data, from the results of this study Sheshop can make decisions on what items need more inventory compared to other items by looking at the value confidence and support by using the RapidMiner application. The results of this study indicate that the association rule formed from 568 Sheshop sales data uses a minimum support value of 10% and a minimum confidence of 50% produces 6 (six) association rules with a confidence value of 58% to 75% with all rules having a positive correlation level. Based on the 6 (six) association rules obtained, 2 products are often purchased at the same time, namely the Koran and tasbih with a confidence value of 75%.
Pemenuhan kebutuhan stok persediaan barang merupakan salah satu dari pilar utama proses bisnis yang rutin dilakukan pelaku bisnis secara umum. Peluang akan terjadinya kesalahan perhitungan yang dilakukan secara konvensional tanpa adanya sebuah analisis mendalam yang menyebabkan tidak akuratnya penentuan jumlah persediaan yang harus dipenuhi. Hasil penelitian menyajikan sebuah solusi dengan pendekatan Data Mining menggunakan teknik aturan asosiasi (association rule). Pendekatan data mining dibangun dengan menggunakan sebuah kerangka kerja pupuler data mining CRoss Industry Standard Process for Data Mining (CRISP-DM) yang dikerjakan dalam 6 tahapan yaitu Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, dan Deployment. Sampel UMKM kota samarinda menjadi objek pada penelitian dengan menggunakan 1000 data dari riwayat transaksi penjualan dalam kurun waktu tertentu yang diidentifikasi dengan menjalankan algoritma Frequent Pattern Growth (FP-Growth) untuk memaksimalkan kinerja komputasi dalam proses ekstraksi pola item barang. Ekstraksi pola aturan dari dataset transaksi penjualan dilakukan dengan 9 kali percobaan dengan melakukan perubahan nilai support (S) dan confidence (C) dengan hasil percobaan trbaik menghasilkan 9 best rule dengan rentang nilai S sebesar 9% - 14% dan C sebesar 60% - 75% yang mencakup aturan 2-itemset dan 3-itemset. Masing-masing rule diterapkan uji lift yang menghasilkan rentang nilai 2.790 – 3.698 dengan rata-rata nilai lift sebesar 3.26, dimana setiap aturan memenuhi nilai minimum (lift > 1.00) yang menunjukkan setiap kombinasi aturan memiliki peluang cross-selling yang baik
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.