The emergence of multi-drug resistant (MDR) strains and even pan drug resistant (PDR) strains is alarming. In this study, we studied the resistance pattern of E. coli pathogens recovered from patients with different infections in different hospitals in Minia, Egypt and the co-existence of different resistance determinants. E. coli was the most prevalent among patients suffering from urinary tract infections (62%), while they were the least isolated from eye infections (10%). High prevalence of MDR isolates was found (73%) associated with high ESBLs and MBLs production (89.4% and 64.8%, respectively). blaTEM (80%) and blaNDM (43%) were the most frequent ESBL and MBL, respectively. None of the isolates harbored blaKPC and blaOXA-48 carbapenemase like genes. Also, the fluoroquinolone modifying enzyme gene aac-(6′)-Ib-cr was detected in 25.2% of the isolates. More than one gene was found in 81% of the isolates. Azithromycin was one of the most effective antibiotics against MDR E. coli pathogens. The high MAR index of the isolates and the high prevalence of resistance genes, indicates an important public health concern and high-risk communities where antibiotics are abused.
Purpose. Multidrug-resistant Klebsiella pneumoniae is a common nosocomial pathogen that plays an important role in ventilator-associated pneumonia (VAP). This study aimed to define the clonal relatedness of K. pneumoniae strains isolated from paediatric VAP in addition to those isolated from environmental samples.Methodology. This study included 19 clinical and 4 environmental K. pneumoniae isolates recovered from the paediatric intensive care unit (PICU) in Assiut University Children's Hospital. The K. pneumoniae isolates were confirmed by biotyping using API strips and subjected to antimicrobial susceptibility testing. The genes coding K1 and K2 capsular types were detected by PCR. The clonal relationships between the K. pneumoniae isolates were determined by pulsed-field gel electrophoresis (PFGE).Results. Ten resistotypes were detected among all the K. pneumoniae isolates, while PFGE identified seventeen K. pneumoniae pulsotypes. Similar PFGE patterns were found between environmental and clinical isolates and between isolates recovered from different patients, suggesting the circulation of K. pneumoniae pathogens in the PICU and the role of the environment in the spread of infection. No correlation was found between the resistotypes and pulsotypes of the K. pneumoniae isolates. PFGE showed higher discriminatory power for the typing of nosocomial K. pneumoniae [Simpson's diversity index (DI)=0.96] than resistotyping (DI=0.72).Conclusion. As far as we know, this is the first report of the isolation of the same multidrug-resistant (MDR) K. pneumoniae pulsotype from patients and environmental samples in the same hospital ward in Egypt. This study provides a step on the way to understanding the genotyping and epidemiology of MDR K. pneumoniae for enhanced prevention of bacterial transmission.
Escherichia coli respond to selective pressure of antimicrobial therapy by developing resistance through a variety of mechanisms. The purpose of this study was to characterize the genetic mechanisms of antimicrobial resistance in fecal E. coli after the routine use of 2 popular antimicrobials. Fourteen resistant E. coli isolates, representing predominant clones that emerged in healthy dogs' feces after treatment with either amoxicillin (11 E. coli isolates) or enrofloxacin (3 E. coli isolates), were tested for mutations in DNA gyrase (gyrA and gyrB) and in topoisomerase IV (parC) and for the presence of β-lactamases (bla(TEM), bla(SHV), bla(PSE-1) and bla(CTX-M)) and plasmid-mediated quinolone resistance (qnrA, qnrB, qnrS, aac(6')-Ib, and qepA), by polymerase chain reaction. Escherichia coli isolates cultured following amoxicillin therapy only expressed single-drug resistance to β-lactams, while the isolates cultured from dogs receiving enrofloxacin therapy expressed multidrug resistance (MDR). The use of RND efflux pump inhibitors increased the susceptibility of the 3 MDR E. coli isolates to doxycycline, chloramphenicol, enrofloxacin, and ciprofloxacin, which indicates a role of the efflux pump in the acquisition of the MDR phenotype. Amplification and sequencing of AcrAB efflux pump regulators (soxR, soxS, marR, and acrR) revealed only the presence of a single mutation in soxS in the 3 MDR isolates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.