The prevalence of aggression has become an increasing problem that threatens lives, from suicidal ideation to homicide. Multiple factors contribute to such issue, including genetic, psychological, familial, economic, environmental, dietary habits, endocrine disturbances, psychiatric disorders, and neurological disturbances, making it resistant to control. If key targets can be identified, it might be possible to find a cure. To date, glutamate has been one culprit involved in aggression, instigated by inflammatory mediators and reactive oxygen species. Monosodium glutamate as well as omega-3 and-6 polyunsaturated fatty acids -components of our modern diet- modulate the inflammatory state, hence, affecting brain and blood glutamate, the latter is an essential neurotransmitter sharing in the antioxidant capacity of erythrocytes.Hence, the erythrocytic or blood glutamate assay, along with members of the inflammatory cascade, might be a cost-effective diagnostic and prognostic tool for aggressive behavior, especially feasible for assessing the efficacy of the intervening dietary and/or pharmacological measures to prevent such potentially devastating behavior.
The history of coronaviruses revealed that these viruses caused multiple outbreaks in the past, including a previous severe acute respiratory syndrome (SARS) outbreak in 2003. In 2019, a novel SARS virus, SARS-CoV-2, started a drastic pandemic that, up till now, keeps peaking in successive waves owing to the mutational ability of the virus versus the short-term immunity against it. Although the angiotensinconverting enzyme 2 (ACE2) is the gate through which the virus gets access to human cells, yet ACE2 is deemed protective in lung injury yielding vasodilator, anti-fibrotic, and anti-inflammatory peptides. The viral-provoked ACE2 downregulation aggravated a subsequent potentially lethal cytokine storm. Both the tumor necrosis factor-alpha (TNF-α) receptor (TNFR), activated by the proinflammatory cytokine, TNF-α, released during coronavirus disease 2019 (COVID-19), and ACE2 are cleaved by tumor necrosis convertase enzyme (TACE) to render respective soluble decoy mediators. Several risk factors were linked to COVID-19 morbidity and neurological affection, including obesity and diabetes mellitus (DM), attributed to ACE2 overexpression in obesity, a low-grade inflammatory state with both obesity and DM, and defective lung reparative machinery, added to low tissue-to-lung ACE2 expression in DM. The ACE2 shedding by SARS-CoV-2 upon its entry into the brain, together with the inflammatory cytokines invading the brain, predispose to such neurological affection. However, ACE2 was not sufficient to justify the occurrence of neurological disorders with COVID-19, owing to its lower brain expression, relative to other tissues. Other mediators should have contributed to such neurological disorders, of which, orexins (OXs) are discussed, owing to multiple functional similarities to ACE2. Eventually, this review highlights such similarities selected according to their possible relevance to COVID-19 symptomatology and pathology. Both ACE2 and OXs confer anti-inflammatory benefits, reduce cerebral endothelial dysfunction, promote neuronal survival and neurogenesis, and add to their therapeutic potentiality in sepsis. Both ACE2 and OXs assist in moderating the stress responses and the stress-activated hypothalamic-pituitary-adrenal axis. Both ACE2 and OXs are affected by obesity and DM. The loss of ACE2 and OXs signaling was suggested in neuro-inflammatory and neurodegenerative diseases. Of interest is the abundance of OXs in the dissemination routes to the brain, namely, the peripheral olfactory and the enteric systems. The presumptive role of OXs as analgesics and antipyretics might add to their favorable profile. Advantageously, the availability of OXs agonists and antagonists makes it applicable to corroborate or abrogate the future utility of targeting the orexigenic system in terms of COVID-19 neurological affection. Elaborative work, exploring in vitro and in vivo models, is recommended to identify or deny such perspective involvement.
The aim of this study was to assess the effect of two types of stressors, regarding the extent of involvement of ouabain (OUA), hippocampal sodium/potassium ATPase ( NKA ) expression, and the hippocampal corticosterone receptors ( CR )/melatonin receptors ( MR ) expression ratio, on the behavioral and cardiovascular responses and on the hippocampal cornu ammonis zone 3 (CA3) and dentate gyrus (DG). Thirty adult male Wistar albino rats aged 7-8 months were exposed to either chronic immobilization or a disturbed dark/light cycle and treated with either ouabain or vehicle. In the immobilized group, in the absence of hippocampal corticosterone (CORT) changes, rats were non-responsive to stress, despite experiencing increased pulse rate, downregulated hippocampal sodium/potassium pump, and enhanced hippocampal CR/MR expression ratio. Prolonged darkness precipitated a reduced upright attack posture, with elevated CORT against hippocampal MR downregulation. Both immobilization and, to a lesser extent, prolonged darkness stress resulted in histopathological and ultrastructural neurodegenerative changes in the hippocampus. OUA administration did not change the behavioral resilience in restrained rats, despite persistence of the underlying biochemical derangements, added to decreased CORT. On the contrary, with exposure to short photoperiods, OUA reverted the behavior towards a combative reduction of inactivity, with unvaried CR/MR and CORT, while ameliorating hippocampal neuro-regeneration, with co-existing NKA and MR repressions. Therefore, the extent of OUA, hippocampal NKA expression, and CR/MR expression, and subsequent behavioral and cardiac responses and hippocampal histopathology, differ according to the type of stressor, whether immobilization or prolonged darkness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.