BackgroundSynthetic biological systems are currently created by an ad-hoc, iterative process of specification, design, and assembly. These systems would greatly benefit from a more formalized and rigorous specification of the desired system components as well as constraints on their composition. Therefore, the creation of robust and efficient design flows and tools is imperative. We present a human readable language (Eugene) that allows for the specification of synthetic biological designs based on biological parts, as well as provides a very expressive constraint system to drive the automatic creation of composite Parts (Devices) from a collection of individual Parts.ResultsWe illustrate Eugene's capabilities in three different areas: Device specification, design space exploration, and assembly and simulation integration. These results highlight Eugene's ability to create combinatorial design spaces and prune these spaces for simulation or physical assembly. Eugene creates functional designs quickly and cost-effectively.ConclusionsEugene is intended for forward engineering of DNA-based devices, and through its data types and execution semantics, reflects the desired abstraction hierarchy in synthetic biology. Eugene provides a powerful constraint system which can be used to drive the creation of new devices at runtime. It accomplishes all of this while being part of a larger tool chain which includes support for design, simulation, and physical device assembly.
BackgroundEngineers frequently vary design parameters to optimize the behaviour of a system. However, synthetic biologists lack the tools to rapidly explore a critical design parameter, gene expression level, and have no means of systematically varying the dosage of an entire genetic circuit. As a step toward overcoming this shortfall, we have developed a technology that enables the same plasmid to be maintained at different copy numbers in a set of closely related cells. This provides a rapid method for exploring gene or cassette dosage effects.ResultsWe engineered two sets of strains to constitutively provide a trans-acting replication factor, either Pi of the R6K plasmid or RepA of the ColE2 plasmid, at different doses. Each DIAL (different allele) strain supports the replication of a corresponding plasmid at a constant level between 1 and 250 copies per cell. The plasmids exhibit cell-to-cell variability comparable to other popular replicons, but with improved stability. Since the origins are orthogonal, both replication factors can be incorporated into the same cell. We demonstrate the utility of these strains by rapidly assessing the optimal expression level of a model biosynthetic pathway for violecein.ConclusionsThe DIAL strains can rapidly optimize single gene expression levels, help balance expression of functionally coupled genetic elements, improve investigation of gene and circuit dosage effects, and enable faster development of metabolic pathways.
Paper-based systems have been widely investigated for developing point-of-care devices because of their simplicity, affordability, and ease of use. Recent advances have resulted in paper systems that have progressed beyond the historical "single-strip" format and allow for a larger range of functions. This review provides a summary of the advances that have been made to improve the utility of paper-based diagnostic tests for biosensing. Specifically, techniques for designing paper devices, including different geometries and chemical patterning to control fluid flow, are discussed. This review also examines novel approaches to improve paper-based assay sensitivities, such as sample preconcentration, signal amplification at the detection zone, and electrochemical methods.
Infectious diseases remain one of the major causes of death worldwide in developing countries. While screening via conventional polymerase chain reaction (PCR) is the gold standard in laboratory testing, its limited applications at the point-of-care have prompted the development of more portable nucleic acid detection systems. These include isothermal DNA amplification techniques, which are less equipment-intensive than PCR. Unfortunately, these techniques still require extensive sample preparation, limiting user accessibility. In this study, we introduce a novel system that combines thermophilic helicase-dependent amplification (tHDA) with a Triton X-100 micellar aqueous two-phase system (ATPS) to achieve cell lysis, lysate processing, and enhanced nucleic acid amplification in a simple, one-step process. The combined one-pot system was able to amplify and detect a target gene from whole-cell samples containing as low as 10 cfu/mL, and is the first known application of ATPSs to isothermal DNA amplification. This system's ease-of-use and sensitivity underlie its potential as a point-of-care diagnostic platform to detect for infectious diseases. Graphical abstract ᅟ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.