The enzymatic hydrolysis of sunflower oil occurs at the water–oil interface. Therefore, the characterization of dynamic interfacial phenomena is essential for understanding the related mechanisms for process optimizations. Most of the available studies for this purpose deal with averaged interfacial properties determined via reaction kinetics and dynamic surface tension measurements. In addition to the classical approach for dynamic surface tension measurements, here, the evolution of the dilational viscoelasticity of the lipase adsorbed layer at the water–oil interface is characterized using profile analysis tensiometry. It is observed that lipase exhibits nonlinear dilational rheology depending on the concentration and age of the adsorbed layer. For reactive water–oil interfaces, the response of the interfacial tension to the sinusoidal area perturbations becomes more asymmetric with time. Surface-active products of the enzymatic hydrolysis of triglycerides render the interface less elastic during compression compared to the expansion path. The lipolysis products can facilitate desorption upon compression while inhibiting adsorption upon expansion of the interface. Lissajous plots provide an insight into how the hysteresis effect leads to different interfacial tensions along the expansion and compression routes. Also, the droplet shape increasingly deviates from a Laplacian shape, demonstrating an irreversible film formation during aging and ongoing hydrolysis reaction, which supports our findings via interfacial elasticity analysis.
The enzymatic hydrolysis of triglycerides with lipases (EC 3.1.1.3.) involves substrates from both water and oil phases, with the enzyme molecules adsorbed at the water-oil (w/o) interface. The reaction rate depends on lipase concentration at the interface and the available interfacial area in the emulsion. In emulsions with large drops, the reaction rate is limited by the surface area. This effect must be taken into account while modelling the reaction. However, determination of the interfacial saturation is not a trivial matter, as enzyme molecules have the tendency to unfold on the interface, and form multi-layer, rendering many enzyme molecules unavailable for the reaction. A multi-scale approach is needed to determine the saturation concentration with specific interfacial area so that it can be extrapolated to droplet swarms. This work explicitly highlights the correlation between interfacial adsorption and reaction kinetics, by integration of the adsorption kinetics into the enzymatic reaction. The rate constants were fitted globally against data from both single droplet and drop swarm experiments. The amount of adsorbed enzymes on the interface was measured in a single drop with a certain surface area, and the enzyme interfacial loading was estimated by Langmuir adsorption isotherm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.