A stochastic ODE model is developed for the motion of a superparamagnetic cluster suspended in a Hagen-Poiseuille flow and guided by an external magnet to travel to a target. The specific application is magnetic drug targeting, with clusters in the range of 10-200 nm radii. As a first approximation, we use a magnetic dipole model for the external magnet and focus on a venule of 10 −4 m radius close to the surface of the skin as the pathway for the clusters. The time of arrival at the target is calculated numerically. Variations in release position, background flow, magnetic field strength, number of clusters, and stochastic effects are assessed. The capture rate is found to depend weakly on variations in the velocity profile, and strongly on the cluster size, the magnetic moment, and the distance between the magnet and the blood vessel wall. A useful condition is derived for the optimal capture rate. The case of simultaneous release of many clusters is investigated. Their accumulation in a neighborhood of the target at the venule wall follows a normal distribution with the standard deviation roughly half of the distance between the magnet and the target. Ideally, this deviation should equal the tumor radius, and the magnet should be beneath the center of the tumor. The optimal injection site for a cluster is found to be just prior to arrival at the target. Two separate mechanisms for capturing a cluster are the magnetic force and, for radii smaller than 20 nm, Brownian motion. For the latter case, the capture rate is enhanced by Brownian motion when the cluster is released near the wall.
Mathematical biology has made significant contributions and advancements in the biological sciences. Recruitment efforts focus on encouraging students, especially those who are underrepresented and underserved, to pursue the field of mathematical biology, regardless of their undergraduate institution type, and raise awareness about the countless professional and academic possibilities provided by this specialized training. This article examines the need to expand, expose, and educate others about mathematical biology. To support field expansion, we give several recommendations of ways to integrate mathematics applied curricula to attract broader student interest. With this exposure-whether it is led by an individual, a department, a university, or researchers in mathematical biology-each can help to promote a base knowledge and appreciation of the field. In order to encourage the next generation of researchers to consider mathematical biology, we highlight current interdisciplinary programs, share popular mathematical tools, and present some thoughts on ways to support a thriving and inclusive mathematical biology community for years to come.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.