Purpose Patients with recurrent prostate cancer (PCa) are commonly treated with androgen withdrawal therapy (AWT); however, almost all patients eventually progress to castration resistant prostate cancer (CRPC), indicating failure of AWT to eliminate androgen-sensitive PCa. The overall goal of these studies is to determine whether dual inhibition of the receptor tyrosine kinases EGFR and HER2 would prolong the effectiveness of this treatment in PCa. Experimental Design We used androgen-dependent LNCaP cells and its CRPC sublines LNCaP-AI and C4-2. Additional data were collected in pRNS-1-1 cells stably expressing a mutant androgen receptor (AR-T877A), and in nude mice harboring CWR22 tumors. Studies utilized EGFR inhibitors erlotinib and AG1478, and HER2 inhibitors trastuzumab and AG879. Results Dual EGFR/HER2 inhibition induced apoptosis selectively in androgen-sensitive PCa cells undergoing AWT, but not in the presence of androgens, or in CRPC cells. We show that AWT alone failed to induce significant apoptosis in androgen-dependent cells, due to AWT-induced increase in HER2 and ErbB3, which promoted survival by increasing Akt phosphorylation. AWT-induced ErbB3 stabilized the AR and stimulated PSA, while it was inactivated only by inhibition of both its dimerization partners EGFR and HER2 (PCa cells do not express ErbB4); but not the inhibition of any one receptor alone, explaining the success of dual EGFR/HER2 inhibition in sensitizing androgen-dependent cells to AWT. The effectiveness of the inhibitors in suppressing growth correlated with its ability to prevent Akt phosphorylation. Conclusions These studies indicate that dual EGFR/HER2 inhibition, administered together with AWT; sensitize PCa cells to apoptosis during AWT.
Calcitriol (1,25(OH)2D3) is cytostatic for prostate cancer (CaP), but had limited therapeutic utility due to hypercalcemia-related toxicities, leading to the development of low-calcemic calcitriol analogs. We show that one analog, 1-α-Hydroxyvitamin-D5 (1α(OH)D5), induced apoptosis in castration-sensitive LNCaP prostate cancer cells, but unlike calcitriol, did not increase androgen receptor (AR) transcriptional activity. LNCaP-AI, a castrate-resistant (CRCaP) LNCaP subline, was resistant to 1α(OH)D5 in the presence of androgens; however, androgen withdrawal (AWD), although ineffective by itself, sensitized LNCaP-AI cells to 1α(OH)D5. Investigation of the mechanism revealed that the vitamin D receptor (VDR), which mediates the effects of 1α(OH)D5, is downregulated in LNCaP-AI cells compared to LNCaP in the presence of androgens, whereas AWD restored VDR expression. Since LNCaP-AI cells expressed higher AR compared to LNCaP and AWD decreased AR, this indicated an inverse relationship between VDR and AR. Further, AR stimulation (by increased androgen) suppressed VDR, while AR downregulation (by ARsiRNA) stimulated VDR levels and sensitized LNCaP-AI cells to 1α(OH)D5 similar to AWD. Another cell line, pRNS-1-1, although isolated from a normal prostate, had lost AR expression in culture and adapted to androgen-independent growth. These cells expressed the VDR and were sensitive to 1α(OH)D5, but restoration of AR expression suppressed VDR levels and induced resistance to 1α(OH)D5 treatment. Taken together, these results demonstrate negative regulation of VDR by AR in CRCaP cells. This effect is likely mediated by prohibitin (PHB), which was inhibited by AR transcriptional activity and stimulated VDR in CRCaP, but not castrate-sensitive cells. Therefore, in castration sensitive cells, although the AR negatively regulates PHB, this does not affect VDR expression, whereas in CRCaP cells, negative regulation of PHB by the AR results in concomitant negative regulation of the VDR by the AR. These data demonstrate a novel mechanism by which 1α(OH)D5 prolong the effectiveness of AWD in CaP cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.