In the adult human brain, normal astrocytes constitute nearly 40% of the total central nervous system (CNS) cell population and may assume a star-shaped configuration resembling epithelial cells insofar as the astrocytes remain intimately associated, through their cytoplasmic extensions, with the basement membrane of the capillary endothelial cells and the basal lamina of the glial limitans externa. Although their exact function remains unknown, in the past, astrocytes were thought to subserve an important supportive role for neurons, providing a favorable ionic environment, modulating extracellular levels of neurotransmitters, and serving as spacers that organize neurons. In immunohistochemical preparations, normal, reactive, and neoplastic astrocytes may be positively identified and distinguished from other CNS cell types by the expression of the astrocyte-specific intermediate filament glial fibrillary acidic protein (GFAP). Glial fibrillary acidic protein is a 50-kD intracytoplasmic filamentous protein that constitutes a portion of, and is specific for, the cytoskeleton of the astrocyte. This protein has proved to be the most specific marker for cells of astrocytic origin under normal and pathological conditions. Interestingly, with increasing astrocytic malignancy, there is progressive loss of GFAP production. As the human gene for GFAP has now been cloned and sequenced, this review begins with a summary of the molecular biology of GFAP including the proven utility of the GFAP promoter in targeting genes of interest to the CNS in transgenic animals. Based on the data provided the authors argue cogently for an expanded role of GFAP in complex cellular events such as cytoskeletal reorganization, maintenance of myelination, cell adhesion, and signaling pathways. As such, GFAP may not represent a mere mechanical integrator of cellular space, as has been previously thought. Rather, GFAP may provide docking sites for important kinases that recognize key cellular substrates that enable GFAP to form a dynamic continuum with microfilaments, integrin receptors, and the extracellular matrix.
Elastin has been identified within the meninges and the microvasculature of the normal human brain. However, the role that elastin plays in either facilitating astrocytoma cell attachment to these structures or modulating astrocytoma invasion has not been previously characterized. We have recently shown that astrocytoma cell lines and specimens produce tropoelastin, and express the 67 kDa elastin binding protein (EBP*). In the present report, we have established that astrocytoma cells attach to elastin as a substrate in vitro. The U87 MG astrocytoma cell line demonstrated the greatest degree of adhesion. In addition, all astrocytoma cell lines examined were capable of penetrating and migrating through an intact elastin membrane, and of degrading tritiated‐elastin, a process that could be prevented by the pre‐incubation of astrocytoma cells with EDTA, but not with α1‐antitrypsin. Astrocytoma cells were also capable of penetrating 1 mm sections of human brain tissue maintained as organotypic cultures. Interestingly, the invasive potential of cultured astrocytoma cells plated on organotypic cultures of human brain was significantly increased after exposure to elastin degradation products (κ‐elastin), which interact with astrocytoma cell surface EBP. Our data show that astrocytoma cells express a functional 67 kDa EBP, enabling them to potentially recognize and attach to elastin as a substrate. These data also suggest that this elastin receptor may be involved in processes which regulate regional astrocytoma invasion. GLIA 25:179–189, 1999. © 1999 Wiley‐Liss, Inc.
We previously demonstrated that P16 Ink4a (p16) expression in p16-de®cient U343 astrocytoma cells causes a G 1 cell cycle arrest, profound changes in cytoskeletal proteins and alterations in expression and activity of the pRB and E2F family proteins. We examine here the e ects of expressing wild type or mutant versions of the downstream targets of p16 in U343 astrocytomas. We ®rst attempted to block proliferation of U343 cells using the dominant mutant of pRB, Dp34. Expression of this mutant in the human osteosarcoma, SAOS-2, potently blocked proliferation but did not a ect the cell cycle of U343 cells. We next showed that expression of E2F-1, E2F-2, E2F-3 and E2F-4 are each able to overcome this p16-dependent cell cycle arrest but exhibit distinct biological activities. Adenoviral-mediated expression of E2F-1, E2F-2, E2F-3, or E2F-4 overcame the p16-dependent cell cycle block and induced alterations in cell morphology. E2F-5, only in conjunction with DP1, promoted cell cycle progression. For both E2F-1 and E2F-2, but not E2F-3 or E2F-5/DP1, cell cycle re-entry was associated with almost quantitative cell death. Only small numbers of dying cells were observed in E2F-4-expressing cultures. Expression of the di erent E2F's altered the expression of distinct sets of cell cycle regulatory proteins. E2F-1 induced endogenous E2F-4 expression and also caused an increase in pRB, p107 and cyclin E levels. Expression of E2F-4 caused a weak increase in E2F-1 levels but also strongly induced pRB, p107, p130 and cyclin E. However, E2F-1 and E2F-4 clearly regulate expression of distinct genes, demonstrated when E2F-4 caused a threefold increase in the levels of cdk2 whereas E2F-1 failed to increase in this cyclin dependent kinase. Similarly, expression of E2F-1 or E2F-2 were shown to have distinct e ects on the expression of cdk2, cyclin E and pRB despite both of these closely related E2F-family members potently inducing cell death. Thus, E2F-1, E2F-2, E2F-3 and E2F-4 are able to overcome the p16-dependent proliferative block in U343 astrocytoma cells. While overcoming this cell cycle block, each of the E2F's uniquely a ect the expression of a number of cell cycle regulatory proteins and have distinct abilities to promote cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.