Intestinal ischemia-reperfusion (I-R) is associated with lung injury and the acute respiratory distress syndrome. The hypothesis of this study was that intestinal I-R activates circulating neutrophils to promote elastase-mediated lung injury. Isolated rat lungs were perfused with blood or plasma obtained after intestinal I-R, and lung neutrophil retention and injury and bronchoalveolar lavage (BAL) elastase were measured. Perfusion with I-R blood caused lung neutrophil accumulation and injury and increased BAL elastase. These effects were attenuated by the elastase inhibitor L-658758. Interference with neutrophil adherence before gut reperfusion blocked BAL elastase accumulation. The role of endothelial junction proteins (cadherins) in I-R-elicited lung damage was also evaluated. Activated human neutrophils proteolyzed cadherins in human umbilical vein endothelial cells. Furthermore, plasma of patients with acute respiratory distress syndrome contained soluble cadherin fragments. The results of this study suggest that the elastase released by systemically activated neutrophils contributes to lung neutrophil accumulation and pulmonary microvascular injury. Elastase-mediated proteolysis of endothelial cell cadherins may represent the mechanism through which lung microvascular integrity is disrupted after intestinal I-R.
Naturally occurring regulatory T cells (nTregs; CD4+CD25+Foxp3+) are capable of suppressing the chronic inflammation observed in a variety of different animal models of autoimmune and chronic inflammatory diseases such as inflammatory bowel diseases, diabetes, and arthritis. A major limitation in exploring how and where nTregs exert their suppression in vivo is the relative paucity of these regulatory cells. Although several laboratories have described different methods to expand flow-purified nTregs or convert conventional/naïve T cells (CD4+Foxp3−) to Foxp3-expressing “induced” Tregs (iTregs; CD4+Foxp3+) ex vivo, we have found that many of these approaches are encumbered with their own limitations. Therefore, we sought to develop a relatively simple ex vivo method to generate large numbers of Foxp3-expressing iTregs that can be used to evaluate their trafficking properties, suppressive activity, and therapeutic efficacy in a mouse model of chronic gut inflammation in vivo. We present a detailed protocol demonstrating that polyclonal activation of conventional CD4+ T cells in the presence of IL-2, TGFβ, and all trans retinoic acid induces >90% conversion of these T cells to Foxp3-expressing iTregs as well as promotes a three- to fourfold increase in proliferation following a 4-day incubation period in vitro. This protocol enhances modestly the surface expression of the gut-homing adhesion molecule CCR9 but not α4β7. Furthermore, we provide preliminary data demonstrating that these iTregs are significantly more potent at suppressing T-cell activation in vitro and are equally effective as freshly isolated nTregs at attenuating chronic colitis in vivo. Finally, we report that this protocol has the potential to generate 30–40 million iTregs from one healthy mouse spleen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.