The GTP-driven component of Ca2+ uptake in red beet (Beta vulgaris L.) plasma membrane vesicles was further characterized to confirm its association with the plasma membrane Ca2+-trans-
The conditions for optimal solubilization and reconstitution of bovine brain synaptic plasma membrane Na+/Ca2+ exchange activity were examined and a series of chromatographic procedures were used for the isolation of a protein involved in this transport activity. The zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate in the presence of 20% (vol/vol) glycerol led to optimal solubilization, and soybean phospholipids in low-pH medium were found to produce optimal reconstitution of activity after dialysis to remove the detergent. Sequential chromatography steps involving the use of gel filtration on Sephacryl S-400 HR, ion exchange on diethylaminoethyl-Sephacel, and metal chelate chromatography on tris-(carboxymethyl)ethylenediamine loaded with LaCl3 led to the isolation of a fraction highly enriched in both Na+/Ca2+ exchange activity and two protein bands identified by denaturing electrophoresis. The estimated molecular masses of the two proteins were 50 and 36 kDa. Development of polyclonal antibodies to the 36-kDa protein permitted immunoextraction of greater than 95% of the antiporter activity from solubilized synaptic plasma membranes. These antibodies cross-reacted with the electroeluted 50-kDa protein on enzyme-linked immunosorbent assays, suggesting a close relationship between the two proteins. These results indicate that the 36-kDa protein is at least a component of the brain membrane Na+/Ca2+ antiporter.
Adrenal medullary grafts generally exhibit poor viability when grafted into the striatum. Previous work in our laboratory demonstrated that chromaffin cells can survive well for up to 2 mo following grafting into the intact rat striatum after cells are isolated from the nonchromaffin supporting cells (fibroblasts and endothelial cells) of the adrenal medulla. The aim of the present study was to assess the long-term viability of isolated bovine chromaffin cells following grafting into the intact rat striatum. The viability of grafted bovine adrenal medullary chromaffin cells was compared in rats receiving either (a) perfused adrenal medulla; (b) isolated chromaffin cells; or (c) isolated chromaffin cells that were subsequently recombined with their nonchromaffin supporting cells. One year postimplantation, all graft types which included fibroblasts and endothelial cells were infiltrated with macrophages and demonstrated an abundance of cellular debris. No viable chromaffin cells were observed. In contrast, healthy tyrosine hydroxylase (TH) and dopamine beta hydroxylase (D beta H) immunoreactive chromaffin cells survived for 1 yr posttransplantation when grafted in isolation from the nonchromaffin constituents of the adrenal medulla. Good xenograft survival was achieved in this group despite the fact that these rats were only immunosuppressed for 1 mo postimplantation. Grafted cells demonstrated morphological characteristics of chromaffin cells in situ and these implants were not accompanied by macrophage infiltration. These data demonstrate that long-term survival of chromaffin cells can be achieved following intrastriatal implantation and the viability of grafted chromaffin cells is dependent upon the removal of the nonchromaffin supporting cells.
The initial rationale for using adrenal (ir) transplants. However, these grafts tended to be small, the graft-host interface was infiltrated with macrophages, and many of the chromaffin cells appeared to be in the process of degenera-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.