ABI-007, an albumin-bound, 130-nm particle form of paclitaxel, was developed to avoid Cremophor/ethanol-associated toxicities in Cremophor-based paclitaxel (Taxol) and to exploit albumin receptor-mediated endothelial transport. We studied the antitumor activity, intratumoral paclitaxel accumulation, and endothelial transport for ABI-007 and Cremophor-based paclitaxel. Antitumor activity and mortality were assessed in nude mice bearing human tumor xenografts [lung (H522), breast (MX-1), ovarian (SK-OV-3), prostate (PC-3), and colon (HT29)] treated with ABI-007 or Cremophor-based paclitaxel. Intratumoral paclitaxel concentrations (MX-1-tumored mice) were compared for radiolabeled ABI-007 and Cremophor-based paclitaxel. In vitro endothelial transcytosis and Cremophor inhibition of paclitaxel binding to cells and albumin was compared for ABI-007 and Cremophor-based paclitaxel. Both ABI-007 and Cremophor-based paclitaxel caused tumor regression and prolonged survival; the order of sensitivity was lung > breast ffi ovary > prostate > colon. The LD 50 and maximum tolerated dose for ABI-007 and Cremophor-based paclitaxel were 47 and 30 mg/kg/d and 30 and 13.4 mg/kg/d, respectively. At equitoxic dose, the ABI-007-treated groups showed more complete regressions, longer time to recurrence, longer doubling time, and prolonged survival. At equal dose, tumor paclitaxel area under the curve was 33% higher for ABI-007 versus Cremophorbased paclitaxel, indicating more effective intratumoral accumulation of ABI-007. Endothelial binding and transcytosis of paclitaxel were markedly higher for ABI-007 versus Cremophorbased paclitaxel, and this difference was abrogated by a known inhibitor of endothelial gp60 receptor/caveolar transport. In addition, Cremophor was found to inhibit binding of paclitaxel to endothelial cells and albumin. Enhanced endothelial cell binding and transcytosis for ABI-007 and inhibition by Cremophor in Cremophor-based paclitaxel may account in part for the greater efficacy and intratumor delivery of ABI-007.Paclitaxel is a naturally occurring complex diterpenoid product extracted from the bark of the western yew, Taxus brevifolia (1). The unique mechanism of paclitaxel of stabilizing tubulin polymer and promoting microtubule assembly effectively inhibits mitosis, motility, and intracellular transport within cancerous cells and results in antineoplastic activity against a wide variety of malignancies (2 -4). Paclitaxel is widely used for the treatment of breast, lung, and advanced ovarian cancers (5).Because paclitaxel has very little aqueous solubility, Cremophor-based paclitaxel uses a Cremophor EL/ethanol vehicle. The amount of Cremophor EL necessary to deliver the requisite doses of paclitaxel is significantly higher than that given with any other marketed drug containing Cremophor EL, reaching plasma concentrations up to 0.4% and remaining >0.1% for 24 hours following a dose of 175 mg/m 2 (6). The Cremophor EL -containing paclitaxel formulation causes severe allergic, hypersensitivity, and anaph...