Id proteins act as negative regulators of bHLH transcription factors by forming transcriptionally inactive protein complexes. The proposed function of these proteins includes promotion of cell growth and cell cycle progression, induction of apoptosis, and inhibition of cellular differentiation. We investigated the role of the ubiquitin-mediated proteolytic pathway in the degradation of the Id3 protein. We found Id3 to be a short-lived protein and estimated the half-life to be approximately 20 min in 293 cells. Using specific inhibitors of the 26S proteasome and mutant fibroblast cells with a temperature-sensitive defect in the essential E1 ubiquitin-activating enzyme, we show that Id3 and the related Id1 and Id2 proteins are degraded through the ubiquitin-proteasome pathway. We found the Id4 protein to be much less sensitive to inhibitors of the 26S proteasome, but its degradation was dependent on the E1 enzyme. In addition, we observed that coexpression of the bHLH protein E47 with Id3 significantly reduced the rate of degradation of Id3, suggesting that Id3 is less susceptible to degradation by the 26S proteasome when complexed to a bHLH protein. -Bounpheng, M. A., Dimas, J. J., Dodds, S. G., Christy, B. A. Degradation of Id proteins by the ubiquitin-proteasome pathway.
Mutation of a single copy of the adenomatous polyposis coli (APC) gene results in familial adenomatous polyposis (FAP), which confers an extremely high risk for colon cancer. ApcMin/+ mice exhibit multiple intestinal neoplasia (MIN) that causes anemia and death from bleeding by 6 months. Mechanistic target of rapamycin complex 1 (mTORC1) inhibitors were shown to improve ApcMin/+ mouse survival when administered by oral gavage or added directly to the chow, but these mice still died from neoplasia well short of a natural life span. The National Institute of Aging Intervention Testing Program showed that enterically targeted rapamycin (eRapa) extended life span for wild type genetically heterogeneous mice in part by inhibiting age-associated cancer. We hypothesized that eRapa would be effective in preventing neoplasia and extend survival of ApcMin/+ mice. We show that eRapa improved survival for ApcMin/+ mice in a dose-dependent manner. Remarkably, and in contrast to previous reports, most of the ApcMin/+ mice fed 42 ppm eRapa lived beyond the median life span reported for wild type syngeneic mice. Furthermore, chronic eRapa did not cause detrimental immune effects in mouse models of cancer, infection or autoimmunity; thus, assuaging concerns that chronic rapamycin treatment suppresses immunity. Our studies suggest that a novel formulation (enteric targeting) of a well-known and widely used drug (rapamycin) can dramatically improve its efficacy in targeted settings. eRapa or other mTORC1 inhibitors could serve as effective cancer preventatives for people with FAP without suppressing the immune system, thus reducing the dependency on surgery as standard therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.