Vascular endothelial growth factor-A (VEGF-A) is required for vascular development throughout the embryo and has been proposed to play an important role in pulmonary vascular patterning. Expressed by the embryonic respiratory epithelium, VEGF-A signals endothelial cells within the splanchnic mesenchyme. To refine understanding of the spatial and temporal role of VEGF-A in lung morphogenesis, isoform VEGF164 was expressed under conditional control in distal and proximal airway epithelial cells. Unexpectedly, increased expression of VEGF164 in distal lung disrupted peripheral vascular net assembly and arrested branching of airways tubules without altering endothelial cell proliferation or apoptosis. Peripheral airway branching and vascular smooth muscle patterning were also altered. In contrast, expression of VEGF164 by epithelial cells of the conducting airways caused atypical evaginations of small capillary-like vessels into large airways but did not alter peripheral vascular net assembly or branching morphogenesis. These data demonstrate that the differential response of endothelial cells in distal vascular beds and large central blood vessels is established early in lung development. Precise temporal and spatial expression of VEGF-A is required for vascular patterning during lung morphogenesis. Disruption of pulmonary vascular assembly perturbs reciprocal interactions with epithelium leading to altered airway branching morphogenesis.
The lung has specific vascular patterning requirements for effective gas exchange at birth, including alignment of airways and blood vessels and lymphatic vessels. Vascular endothelial growth factors (VEGF) are potent effectors of vascular development. We examined the temporal and spatial expression of VEGF-D and specific VEGF-A isoforms at each stage of lung development. VEGF-D, expressed only by cadherin-11-positive cells of the mesenchyme, is first detected at embryonic day (E) 13.5, a period of active vasculogenesis. VEGFR-3, its cognate receptor, is detected earlier on days E11.5 to E14.5, in both blood vessels and lymphatic vessels and later, on day E17.5, in only lymphatic vessels. VEGF-A is expressed in the mesenchyme throughout lung development and also by the epithelium midway through organogenesis. Before E14, the predominant forms of VEGF-A are the soluble isoforms, VEGF-A120 and 164. Not until E14.5 do epithelial cells at the tips of expanding airways express VEGF-A, including VEGF-A188, an isoform with high affinity for extracellular matrix. Our results demonstrate unique temporal and spatial expression of VEGF-D and specific VEGF-A isoforms during lung development and suggest these related factors have distinct functions in vascular and lymphatic patterning of the lung.
Mammalian lung development is mediated through complex interactions between foregut endoderm and surrounding mesenchyme. As airway branching progresses, the mesenchyme undergoes dramatic remodeling and differentiation. Little is understood about the mechanisms that direct mesenchymal organization during lung development. A screen for candidate genes mediating this process identified Slit, a ligand for the Roundabout (Robo) receptor previously associated with guidance of axonal projections during central nervous system development. Here, we demonstrate by in situ hybridization that two Slit genes (Slit-2 and Slit-3) and two Robo genes (Robo-1 and Robo-2) are expressed in fetal lung mesenchyme. Slit-2 and Robo-1 expression is present throughout mesenchyme at midgestation and is not detectable by newborn day 1. Slit-3 and Robo-2 expression is restricted to specific, complementary subsets of mesenchyme. Robo-2 is expressed in mesenchymal cells immediately adjacent to large airways, whereas Slit-3 expression predominates in mesenchyme remote from airway epithelium. The temporal and spatial distribution of Slit and Robo mRNAs indicate that these genes may direct the functional organization and differentiation of fetal lung mesenchyme. Developmental Dynamics 230:350 -360, 2004.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.