Transgenic FVB/N mice overexpressing human (Hu) or mouse (Mo) Alzheimer amyloid precursor protein (APP695) die early and develop a CNS disorder that includes neophobia and impaired spatial alternation, with diminished glucose utilization and astrogliosis mainly in the cerebrum. Age at onset of neophobia and age at death decrease with increasing levels of brain APP. HuAPP transgenes induce death much earlier than MoAPP transgenes expressed at similar levels. No extracellular amyloid was detected, indicating that some deleterious processes related to APP overexpression are dissociated from formation of amyloid. A similar clinical syndrome occurs spontaneously in approximately 20% of nontransgenic mice when they reach mid- to late-adult life, suggesting that APP overexpression may accelerate a naturally occurring age-related CNS disorder in FVB/N mice.
Cerebral ischemia is followed by a local inflammatory response that is thought to participate in the extension of the tissue damage occurring in the postischemic period. However, the mechanisms whereby the inflammation contributes to the progression of the damage have not been fully elucidated. In models of inflammation, expression of the inducible isoform of nitric oxide synthase (iNOS) is responsible for cytotoxicity through the production of large amounts of nitric oxide (NO). In this study, therefore, we sought to establish whether iNOS is expressed in the ischemic brain. Rats were killed 6 h to 7 days after occlusion of the middle cerebral artery. iNOS expression in the ischemic area was determined by reverse-transcription polymerase chain reaction. Porphobilinogen deaminase mRNA was detected in the same sample and used for normalization. In the ischemic brain, there was expression of iNOS mRNA that began at 12 h, peaked at 48 h, and returned to baseline at 7 days (n = 3/time point). iNOS mRNA expression paralleled the time course of induction of iNOS catalytic activity, determined by the citrulline assay (17.4 +/- 4.4 pmol citrulline/micrograms protein/min at 48 h; mean +/- SD; n = 5 per time point). iNOS immunoreactivity was seen in neutrophils at 48-96 h after ischemia. The data provide molecular, biochemical, and immunocytochemical evidence of iNOS induction following focal cerebral ischemia. These findings, in concert with our recent demonstration that inhibition of iNOS reduces infarct volume in the same stroke model, indicate that NO production may play an important pathogenic role in the progression of the tissue damage that follows cerebral ischemia.
Five new compounds (1-5), including two secolignans, two tetrahydrofuran lignans, and one highly methoxylated dihydronaphthalenone, were isolated from the whole plant of Peperomia pellucida. These compounds were accompanied by the known peperomins A, B, C, and E, 7,8-trans-8,8'-trans-7',8'-cis-7,7'-bis(5-methoxy-3,4-methylenedioxyphenyl)-8-acetoxymethyl-8'-hydroxymethyltetrahydrofuran, 7,8-trans-8,8'-trans-7',8'-cis-7-(5-methoxy-3,4-methylenedioxyphenyl)-7'-(4-hydroxy-3,5-dimethoxyphenyl)-8,8'-diacetoxymethyltetrahydrofuran, sesamin, and isoswertisin. New structures were elucidated mainly by NMR and MS techniques, and anticancer activities evaluated in HL-60, MCF-7, and HeLa cell lines. Compound 1 and peperomin E show growth inhibitory effects on the three cancer cell lines with IC(50) values ranging between 1.4 and 9.1 and between 1.8 and 11.1 microM, respectively. Compound 2 has a weak suppressive activity on HL-60 cells (IC(50) = 10.8 microM), while 7,8-trans-8,8'-trans-7',8'-cis-7,7'-bis(5-methoxy-3,4-methylenedioxyphenyl)-8-acetoxymethyl-8'-hydroxymethyltetrahydrofuran exhibits estrogen-like properties (EC(50) = 3.1 microM) in CV-1 cells transfected with human estrogen receptor (ERalpha).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.