Lung elastic tissue maturation is tightly controlled during fetal development. With increasing SCORE, elastic tissue increased >200%, accounting, in part, for the positive end-expiratory pressure needed to maintain end-expiratory lung volume in infants at risk for CLD. Saccule and duct diameters more than doubled, and septa thickened significantly in CLD. We propose the following sequence to be operative in CLD: at birth, the preterm infant (=30 weeks) has inadequate elastic tissue and elastic recoil, but high surface tension recoil. After surfactant treatment, surface tension recoil markedly decreases, permitting the saccules and ducts, with very low elastic recoil, to be overstretched by volutrauma. The damaged lung responds with elastosis, distorted acinar growth, cellular influx, and upregulation of inflammatory and reparative proteins. This hypothesis can be summarized by the following terms: lung immaturity, inflammation, volutrauma, and elastic tissue alterations.
Parenchymal collagen increases throughout development. Before 30 weeks, there is a delicate complex interstitial collagen network, which may be important for primary septation and subsequent normal development. Positive pressure ventilation, if excessive, and depending on lung maturity and disease state, over a short time can severely compress the interstitium and damage this collagen network and prevent normal primary septation and arrest or distort future lung development. With severe CLD, distal air space diameter increases. There is a failure of primary and secondary septation, arrested lung development and remodeling, with thickened cnt and remodeling, with thickened collagenous saccular walls, and a wide interstitium with increased quantity and size of collagen fibers that can affect the mechanics of ventilation. We conclude that normal lung development is dependent on a normal interstitium and, perhaps, collagen architecture and that origins of CLD begin early in the course of positive pressure ventilation.
Oxygen toxicity is one of the major risk factors in the development of the chronic lung disease or bronchopulmonary dysplasia in premature infants. Using proteomic analysis, we discovered that mitochondrial aldehyde dehydrogenase (mtALDH or ALDH2) was downregulated in neonatal rat lung after hyperoxic exposure. To study the role of mtALDH in hyperoxic lung injury, we overexpressed mtALDH in human lung epithelial cells (A549) and found that mtALDH significantly reduced hyperoxia-induced cell death. Compared with control cells (Neo-A549), the necrotic cell death in mtALDH-overexpressing cells (mtALDH-A549) decreased from 25.3 to 6.5%, 50.5 to 9.1%, and 52.4 to 15.1% after 24-, 48-, and 72-h hyperoxic exposure, respectively. The levels of intracellular and mitochondria-derived reactive oxygen species (ROS) in mtALDH-A549 cells after hyperoxic exposure were significantly lowered compared with Neo-A549 cells. mtALDH overexpression significantly stimulated extracellular signal-regulated kinase (ERK) phosphorylation under normoxic and hyperoxic conditions. Inhibition of ERK phosphorylation partially eliminated the protective effect of mtALDH in hyperoxia-induced cell death, suggesting ERK activation by mtALDH conferred cellular resistance to hyperoxia. mtALDH overexpression augmented Akt phosphorylation and maintained the total Akt level in mtALDH-A549 cells under normoxic and hyperoxic conditions. Inhibition of phosphatidylinositol 3-kinase (PI3K) activation by LY294002 in mtALDH-A549 cells significantly increased necrotic cell death after hyperoxic exposure, indicating that PI3K-Akt activation by mtALDH played an important role in cell survival after hyperoxia. Taken together, these data demonstrate that mtALDH overexpression attenuates hyperoxia-induced cell death in lung epithelial cells through reduction of ROS, activation of ERK/MAPK, and PI3K-Akt cell survival signaling pathways.
The lymphatic vasculature functions to maintain tissue perfusion homeostasis. Defects in its formation or disruption of the vessels result in lymphedema, the effective treatment of which is hampered by limited understanding of factors regulating lymph vessel formation. Mice lacking T1alpha/podoplanin, a lymphatic endothelial cell transmembrane protein, have malformed lymphatic vasculature with lymphedema at birth, but the molecular mechanism for this phenotype is unknown. Here, we show, using primary human lung microvascular lymphatic endothelial cells (HMVEC-LLy), that small interfering RNA-mediated silence of podoplanin gene expression has the dramatic effect of blocking capillary tube formation in Matrigel. In addition, localization of phosphorylated ezrin/radixin/moesin proteins to plasma membrane extensions, an early event in the capillary morphogenic program in lymphatic endothelial cells, is impaired. We find that cells with decreased podoplanin expression fail to properly activate the small GTPase RhoA early (by 30 min) after plating on Matrigel, and Rac1 shows a delay in its activation. Further indication that podoplanin action is linked to RhoA activation is that use of a cell-permeable inhibitor of Rho inhibited lymphatic endothelial capillary tube formation in the same manner as did podoplanin gene silencing, which was not mimicked by treatment with a Rac1 inhibitor. These data clearly demonstrate that early activation of RhoA in the lymphangiogenic process, which is required for the successful establishment of the capillary network, is dependent on podoplanin expression. To our knowledge, this is the first time that a mechanism has been suggested to explain the role of podoplanin in lymphangiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.