Soaring raptors can fly at high altitudes of up to 9000 m. The behavioural adjustments to high-altitude flights are largely unknown. We studied thermalling flights of Himalayan vultures (Gyps himalayensis) from 50 to 6500 m above sea level, a twofold range of air densities. To create the necessary lift to support the same weight and maintain soaring flight in thin air birds might modify lift coefficient by biophysical changes, such as wing posture and increasing the power expenditure. Alternatively, they can change their flight characteristics. We show that vultures use the latter and increase circle radius by 35% and airspeed by 21% over their flight altitude range. These simple behavioural adjustments enable vultures to move seamlessly during their annual migrations over the Himalaya without increasing energy output for flight at high elevations.
This is an open access article under the terms of the Creat ive Commo ns Attri bution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Growing developmental activities, such as hydropower construction, farm roads, and other human activities, are affecting the critically endangered white‐bellied heron (WBH). Out of a known global population of 60, 28 individuals inhabit the river basin area and freshwater lakes and ponds of Bhutan. Several constraints impede continuous monitoring of endangered species, such as the isolated and cryptic nature of the species and the remoteness of its habitat; to date, there are no long‐term reference data or techniques implemented for continuous monitoring of this species. In this study, we designed acoustic detection and habitat characterisation methods using long‐duration recordings from three habitat areas in Bhutan. Acoustic indices were extracted and used to implement a species‐specific call detector and to generate habitat soundscape representations. Using WBH calls annotated in month‐long recordings from a known site, a novel indices‐based detector was implemented and tested. A total of 960 hr of continuous audio recordings from three habitats in Bhutan were analysed. We found that a species call detector implemented using a combination of acoustic indices (that includes measures of spectral and temporal entropy and different angles of spectral ridges) has a correct detection rate of 81%. Additionally, visual inspection of the species’ acoustic habitat using long‐duration false‐colour spectrograms enabled qualitative assessment of acoustic habitat structure and other dominant acoustic events. This study proposes a combined approach of species acoustic detection and habitat soundscape analysis for holistic acoustic monitoring of endangered species. As a direct outcome of this work, we documented acoustic reference data on the critically endangered WBH from multiple habitat areas and have analysed its temporal vocalisation patterns across sites.
Bio-logging, the on-animal deployment of miniaturised electronic data recorders, allows for the study of location, body position, and physiology of individuals throughout their ontogeny. For terrestrial animals, 1 Hz GPS-position, 3D-body acceleration, and ambient temperature provide standard data to link to the physiology of life histories. Environmental context is added at ever finer scales using remote sensing earth observation data. Here we showcase the use of such bio-logging approaches in a conservation physiology study on endangered Himalayan vultures (Gyps himalayensis). We determine environmental, behavioural, and physiological causes of survival in immature birds that roam from wintering sites in India, Bhutan, and Nepal towards summer areas in Tibet and Mongolia. Five of 18 immature griffons died during one year. Individuals that died had failed to migrate sufficiently far northward (>1500 km) in spring. Individuals likely died if they flew against headwinds from the north or were less able to find thermal updrafts. Surviving individuals migrated to cold and dry areas with low population density. We highlight flight experience, long distance movements, and remote places with low human population as factors critical for the survival of Himalayan vultures. High-resolution bio-logging studies can advance conservation management by pinpointing where and why migratory animals have problems and die.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.