Details are given in the paper of the refinement of a three-dimensional layer integrated turbulence model and its application to a scaled physical model of a reservoir, named Hamidieh Reservoir, in Iran. The strong turbulent flows generated in this reservoir are due to the high volumes of flow diversion, with low head differences. In this paper, a refined numerical model is applied to a reservoir, associated with a dam, water intakes and sluice gates, with the aim being to investigate the flow patterns and sediment transport processes in the vicinity of such hydraulic structures. The calibration of the model is undertaken using measurements made from a scaled physical model. The numerical model is able to predict the conditions for a range of scenarios that are difficult to test in the physical model. Different scenarios are introduced to investigate the effects of various intake and sluice gate configurations, as well as their operation schemes on the flow and sediment transport processes into Hamidieh Reservoir. The results indicate that the flow velocity field in the vicinity of one of the intakes varies significantly. Moreover, the sluice gates do not appear to have any considerable effect on the suspended sediment concentrations moving through the intakes.
Sedimentation and erosion can significantly affect the performance of river regulated reservoirs. In the vicinity of flow control structures, the interaction between the hydrodynamics and sediment transport often induces complex morphological processes. It is generally very challenging to accurately predict these morphological processes in real applications. Details are given of the refinement and application of a three-dimensional (3-D) layer integrated model to predict the morphological processes in a river regulated reservoir. The model employs an Alternating Direction Implicit finite difference algorithm to solve the mass, momentum and suspended sediment transport conservation equations, and an explicit finite difference scheme for the bed sediment mass conservation equation for calculating bed level changes. The model is verified against experimental data reported in the literature. It is then applied to a scaled physical model of a regulated reservoir, including the associated intakes and sluice gates, to predict the velocity distributions, sediment transport rates and bed level changes in the vicinity of the hydraulic structures. It is found that the velocity distribution near an intake is non-uniform, resulting in a reduction in the suspended sediment flux through the intake and the formation of a sedimentation zone inside the reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.