Swarm robotics draws inspiration from decentralized self-organizing biological systems in general and from the collective behavior of social insects in particular. In social insect colonies, many tasks are performed by higher order group or team entities, whose task-solving capacities transcend those of the individual participants. In this paper, we investigate the emergence of such higher order entities. We report on an experimental study in which a team of physical robots performs a foraging task. The robots are "identical" in hardware and control. They make little use of memory and take actions purely on the basis of local information. Our study advances the current state of the art in swarm robotics with respect to the number of real-world robots engaging in teamwork (up to 12 robots in the most challenging experiment). To the best of our knowledge, in this paper we present the first self-organized system of robots that displays a dynamical hierarchy of teamwork (with cooperation also occurring among higher order entities). Our study shows that teamwork requires neither individual recognition nor differences between individuals. This result might also contribute to the ongoing debate on the role of these characteristics in the division of labor in social insects.
We present two swarm intelligence control mechanisms used for distributed robot path formation. In the first, the robots form linear chains. We study three variants of robot chains, which vary in the degree of motion allowed to the chain structure. The second mechanism is called vectorfield. In this case, the robots form a pattern that globally indicates the direction towards a goal or home location.We test each controller on a task that consists in forming a path between two objects which an individual robot cannot perceive simultaneously. Our simulation experiments show promising results. All the controllers are able to form paths in complex obstacle environments and exhibit very good scalability, robustness, and fault tolerance characteristics. Additionally, we observe that chains perform better for small robot group sizes, while vectorfield performs better for large groups.
This paper provides an overview of the SWARM-BOTS project, a robotic project sponsored by the Future and Emerging Technologies program of the European Commission. The paper illustrates the goals of the project, the robot prototype and the 3D simulator we built. It also reports on the results of experimental work in which distributed adaptive controllers are used to control a group of real, or simulated, robots so that they perform a variety of tasks which require cooperation and coordination.
Foraging robots involved in a search and retrieval task may create paths to navigate faster in their environment. In this context, a swarm of robots that has found several resources and created different paths may benefit strongly from path selection. Path selection enhances the foraging behavior by allowing the swarm to focus on the most profitable resource with the possibility for unused robots to stop participating in the path maintenance and to switch to another task. In order to achieve path selection, we implement virtual ants that lay artificial pheromone inside a network of robots. Virtual ants are local messages transmitted by robots; they travel along chains of robots and deposit artificial pheromone on the robots that are literally forming the chain and indicat- ing the path. The concentration of artificial pheromone on the robots allows them to decide whether they are part of a selected path. We parameterize the mechanism with a mathematical model and provide an experimental validation using a swarm of 20 real robots. We show that our mechanism favors the selection of the closest resource is able to select a new path if a selected resource becomes unavailable and selects a newly detected and better resource when possible. As robots use very simple messages and behaviors, the system would be particularly well suited for swarms of microrobots with minimal abilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.