The application of aluminum foam materials is increasing rapidly due to the high demand during the last decades. This research presents an overview of the characteristics and architectural applications of aluminum foam materials. Moreover, it represents the most relevant properties, in particular, physical and mechanical aspects and figures out the prospects and growth rate of these materials in architectures by considering the economic benefits. Besides, based on these specific characterizations, the most valuable applications along with advantageous in architectural works are discussed.
The cracks naturally exist in concrete and make it weak to the deleterious environment, ending with structure degradation. According to this fact, concrete requires to be improved and remediated. Self-healing methods are considered as a helpful way to mitigate the propagation and development of the cracks in the concrete. Bio-mineralization methods can heal the concrete by using bacteria suchlike Bacillus subtilis and Bacillus pasteurii, which can seal the cracks by CaCO3 precipitation. The literature represents the MICP method of using bacteria in concrete, which can improve the concrete durability by increasing the compressive strength. Furthermore, the different kinds of bacteria used in the concrete structure and the methods of employing as a self-healing agent review. Moreover, it illustrates B. Pasteurii and B. Sphaericus has more efficient results between other bacteria due to increasing the compressive strength and lifespan of the concrete.
The purpose of the recent project is giving empirical research of the dynamic properties along with measuring the damping ratio for different metal foam sandwich specimens, and mathematical modeling of these particular structures. Besides, the various specimens were modeled by employing ANSYS for the FEM analysis. Concerning to have a reliable result for two-phase sample the random noise outcomes have been applied and associated with the FE model. The final results depict an appropriate evaluation of the vibrational damping for two-phase specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.