To help tolerate the latency of accessing remote data in a shared-memory multiprocessor, we explore a novel approach to switch-on-miss multithreading that is software-controlled rather than hardware-controlled. Our technique uses informing memory operations to trigger the thread switches with sufficiently low overhead that we observe speedups of 10% or more for four out of seven applications, with one application speeding up by 14%. By selectively applying register partitioning to reduce thread switching overhead, we can achieve further gains: e.g., an overall speedup of 23% for FFT. Although this software-controlled approach does not match the performance of hardwarecontrolled schemes on multithreaded workloads, it requires substantially less hardware support than previous schemes and is not likely to degrade single-thread performance. As remote memory accesses continue to become more expensive relative to software overheads, we expect software-controlled multithreading to become increasingly attractive in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.