AimsPortal hypertension characterized by generalized vasodilatation with endothelial dysfunction affecting nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) has been suggested to involve bacterial translocation and/or the angiotensin system. The possibility that ingestion of probiotics prevents endothelial dysfunction in rats following common bile duct ligation (CBDL) was evaluated.MethodsRats received either control drinking water or the probiotic VSL#3 solution (50 billion bacteria.kg body wt−1.day−1) for 7 weeks. After 3 weeks, rats underwent surgery with either resection of the common bile duct or sham surgery. The reactivity of mesenteric artery rings was assessed in organ chambers, expression of proteins by immunofluorescence and Western blot analysis, oxidative stress using dihydroethidium, and plasma pro-inflammatory cytokine levels by flow cytometry.ResultsBoth NO- and EDH-mediated relaxations to acetylcholine were reduced in the CBDL group compared to the sham group, and associated with a reduced expression of Cx37, Cx40, Cx43, IKCa and SKCa and an increased expression of endothelial NO synthase (eNOS). In aortic sections, increased expression of NADPH oxidase subunits, angiotensin converting enzyme, AT1 receptors and angiotensin II, and formation of ROS and peroxynitrite were observed. VSL#3 prevented the deleterious effect of CBDL on EDH-mediated relaxations, vascular expression of connexins, IKCa, SKCa and eNOS, oxidative stress, and the angiotensin system. VSL#3 prevented the CBDL-induced increased plasma TNF-α, IL-1α and MCP-1 levels.ConclusionsThese findings indicate that VSL#3 ingestion prevents endothelial dysfunction in the mesenteric artery of CBDL rats, and this effect is associated with an improved vascular oxidative stress most likely by reducing bacterial translocation and the local angiotensin system.
Defect in apoptosis has been implicated as a major cause of resistance to chemotherapy observed in B cell chronic lymphocytic leukaemia (B CLL). This study evaluated the pro-apoptotic effect of an anthocyanin-rich dietary bilberry extract (Antho 50) on B CLL cells from 30 patients and on peripheral blood mononuclear cells (PBMCs) from healthy subjects, and determined the underlying mechanism. Antho 50 induced concentration- and time-dependent pro-apoptotic effects in B CLL cells but little or no effect in PBMCs. Among the main phenolic compounds of the bilberry extract, delphinidin-3-O-glucoside and delphinidin-3-O-rutinoside induced a pro-apoptotic effect. Antho 50-induced apoptosis is associated with activation of caspase 3, down-regulation of UHRF1, a rapid dephosphorylation of Akt and Bad, and down-regulation of Bcl-2. Antho 50 significantly induced PEG-catalase-sensitive formation of reactive oxygen species in B CLL cells. PEG-catalase prevented the Antho 50-induced induction of apoptosis and related signaling. The present findings indicate that Antho 50 exhibits strong pro-apoptotic activity through redox-sensitive caspase 3 activation-related mechanism in B CLL cells involving dysregulation of the Bad/Bcl-2 pathway. This activity of Antho 50 involves the glucoside and rutinoside derivatives of delphinidin. They further suggest that Antho 50 has chemotherapeutic potential by targeting selectively B CLL cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.