Intraindividually, plasma TFV concentrations significantly decreased while cell associated TFV-DP concentrations significantly increased after switching from a TDF to a TAF-containing antiretroviral therapy regimen.
Occasional zoonotic viral attacks on immunologically naive populations result in massive death tolls that are capable of threatening human survival. Currently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the infectious agent that causes coronavirus disease (COVID-19), has spread from its epicenter in Wuhan China to all parts of the globe. Real-time mapping of new infections across the globe has revealed that variable transmission patterns and pathogenicity are associated with differences in SARS-CoV-2 lineages, clades, and strains. Thus, we reviewed how changes in the SARS-CoV-2 genome and its structural architecture affect viral replication, immune evasion, and transmission within different human populations. We also looked at which immune dominant regions of SARS-CoV-2 and other coronaviruses are recognized by Major Histocompatibility Complex (MHC)/Human Leukocyte Antigens (HLA) genes and how this could impact on subsequent disease pathogenesis. Efforts were also placed on understanding immunological changes that occur when exposed individuals either remain asymptomatic or fail to control the virus and later develop systemic complications. Published autopsy studies that reveal alterations in the lung immune microenvironment, morphological, and pathological changes are also explored within the context of the review. Understanding the true correlates of protection and determining how constant virus evolution impacts on host-pathogen interactions could help identify which populations are at high risk and later inform future vaccine and therapeutic interventions.
Quantification of antiretroviral (ARV) drug concentrations in peripheral blood mononuclear cells (PBMCs) and tissue isolated mononuclear cells (TIMCs) from lymph node (LNMC) and rectum (RMC) is an important measure of bio-distribution. Normalization of drug concentrations is critical to represent tissue drug concentrations and to analyze both intra-individual and inter-individual variability in drug distribution. However, a molecular method to normalize intracellular drug concentrations in PBMCs and TIMCs methanol extracts is currently unavailable. In this study, a novel droplet digital PCR (ddPCR) assay was designed to amplify RPP30 gene sequence conserved in human and non-human primates (NHP). Genomic DNA (gDNA) isolated from 70 percent methanol embedded PBMCs and TIMCs was used as ddPCR template to quantitate precise RPP30 copies to derive cell counts. The novel molecular method quantitated RPP30 copies in human and rhesus macaque gDNA templates with greater accuracy and precision than qPCR. RPP30 ddPCR derived cell counts are strongly correlated with automated cytometer based cell counts in PBMC (R = 0.90, p = 0.001 and n = 20); LNMC (R = 0.85 p = 0.0001 and n = 22) and RMC (R = 0.92, p = 0.0001 and n = 20) and achieved comparable normalized drug concentrations. Therefore, the RPP30 ddPCR assay is an important normalization method in drug bio-distribution and pharmacokinetic studies in humans and NHPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.