Background: Sepsis is a major reason for intensive care unit (ICU) admission, also in resource-poor settings. ICUs in low-and middle-income countries (LMICs) face many challenges that could affect patient outcome. Aim: To describe differences between resource-poor and resource-rich settings regarding the epidemiology, pathophysiology, economics and research aspects of sepsis. We restricted this manuscript to the ICU setting even knowing that many sepsis patients in LMICs are treated outside an ICU. Findings: Although many bacterial pathogens causing sepsis in LMICs are similar to those in high-income countries, resistance patterns to antimicrobial drugs can be very different; in addition, causes of sepsis in LMICs often include tropical diseases in which direct damaging effects of pathogens and their products can sometimes be more important than the response of the host. There are substantial and persisting differences in ICU capacities around the world; not surprisingly the lowest capacities are found in LMICs, but with important heterogeneity within individual LMICs. Although many aspects of sepsis management developed in rich countries are applicable in LMICs, implementation requires strong consideration of cost implications and the important differences in resources. Conclusions: Addressing both disease-specific and setting-specific factors is important to improve performance of ICUs in LMICs. Although critical care for severe sepsis is likely cost-effective in LMIC setting, more detailed evaluation at both at a macro-and micro-economy level is necessary. Sepsis management in resource-limited settings is a largely unexplored frontier with important opportunities for research, training, and other initiatives for improvement.
The 2013-16 Ebola virus disease outbreak in west Africa was associated with unprecedented challenges in the provision of care to patients with Ebola virus disease, including absence of pre-existing isolation and treatment facilities, patients' reluctance to present for medical care, and limitations in the provision of supportive medical care. Case fatality rates in west Africa were initially greater than 70%, but decreased with improvements in supportive care. To inform optimal care in a future outbreak of Ebola virus disease, we employed the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology to develop evidence-based guidelines for the delivery of supportive care to patients admitted to Ebola treatment units. Key recommendations include administration of oral and, as necessary, intravenous hydration; systematic monitoring of vital signs and volume status; availability of key biochemical testing; adequate staffing ratios; and availability of analgesics, including opioids, for pain relief.
As of 20 May 2016 there have been 28,646 cases and 11,323 deaths resulting from the West African Ebola virus disease (EVD) outbreak reported to the World Health Organization. There continue to be sporadic flare-ups of EVD cases in West Africa.EVD presentation is nonspecific and characterized initially by onset of fatigue, myalgias, arthralgias, headache, and fever; this is followed several days later by anorexia, nausea, vomiting, diarrhea, and abdominal pain. Anorexia and gastrointestinal losses lead to dehydration, electrolyte abnormalities, and metabolic acidosis, and, in some patients, acute kidney injury. Hypoxia and ventilation failure occurs most often with severe illness and may be exacerbated by substantial fluid requirements for intravascular volume repletion and some degree of systemic capillary leak. Although minor bleeding manifestations are common, hypovolemic and septic shock complicated by multisystem organ dysfunction appear the most frequent causes of death.Males and females have been equally affected, with children (0–14 years of age) accounting for 19 %, young adults (15–44 years) 58 %, and older adults (≥45 years) 23 % of reported cases. While the current case fatality proportion in West Africa is approximately 40 %, it has varied substantially over time (highest near the outbreak onset) according to available resources (40–90 % mortality in West Africa compared to under 20 % in Western Europe and the USA), by age (near universal among neonates and high among older adults), and by Ebola viral load at admission.While there is no Ebola virus-specific therapy proven to be effective in clinical trials, mortality has been dramatically lower among EVD patients managed with supportive intensive care in highly resourced settings, allowing for the avoidance of hypovolemia, correction of electrolyte and metabolic abnormalities, and the provision of oxygen, ventilation, vasopressors, and dialysis when indicated. This experience emphasizes that, in addition to evaluating specific medical treatments, improving the global capacity to provide supportive critical care to patients with EVD may be the greatest opportunity to improve patient outcomes.Electronic supplementary materialThe online version of this article (doi:10.1186/s13054-016-1325-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.