Protein function is a concept that can have different interpretations in different biological contexts, and the number and diversity of novel proteins identified by large-scale "omics" technologies poses increasingly new challenges. In this review we explore current strategies used to predict protein function focused on high-throughput sequence analysis, as for example, inference based on sequence similarity, sequence composition, structure, and protein-protein interaction. Various prediction strategies are discussed together with illustrative workflows highlighting the use of some benchmark tools and knowledge bases in the field.
Motivation Transcription factors (TFs) are key regulators of gene expression, and can activate or repress multiple target genes, forming regulatory units, or regulons. Understanding downstream effects of these regulators includes evaluating how TFs cooperate or compete within regulatory networks. Here we present RTNduals, an R/Bioconductor package that implements a general method for analyzing pairs of regulons. Results RTNduals identifies a dual regulon when the number of targets shared between a pair of regulators is statistically significant. The package extends the RTN (Reconstruction of Transcriptional Networks) package, and uses RTN transcriptional networks to identify significant co-regulatory associations between regulons. The Supplementary Information reports two case studies for TFs using the METABRIC and TCGA breast cancer cohorts. Availability and implementation RTNduals is written in the R language, and is available from the Bioconductor project at http://bioconductor.org/packages/RTNduals/. Supplementary information Supplementary data are available at Bioinformatics online.
Long non-coding RNAs (lncRNAs) are functional transcripts with more than 200 nucleotides. These molecules exhibit great regulatory capacity and may act at different levels of gene expression regulation. Despite this regulatory versatility, the biology of these molecules is still poorly understood. Computational approaches are being increasingly used to elucidate biological mechanisms in which these lncRNAs may be involved. Co-expression networks can serve as great allies in elucidating the possible regulatory contexts in which these molecules are involved. Herein, we propose the use of the pipeline deposited in the RTN package to build lncRNAs co-expression networks using TCGA breast cancer (BC) cohort data. Worldwide, BC is the most common cancer in women and has great molecular heterogeneity. We identified an enriched co-expression network for the validation of relevant cell processes in the context of BC, including LINC00504. This lncRNA has increased expression in luminal subtype A samples, and is associated with prognosis in basal-like subtype. Silencing this lncRNA in luminal A cell lines resulted in decreased cell viability and colony formation. These results highlight the relevance of the proposed method for the identification of lncRNAs in specific biological contexts.
Motivation Dendrogram is a classical diagram for visualizing binary trees. Although efficient to represent hierarchical relations, it provides limited space for displaying information on the leaf elements, especially for large trees. Results Here we present TreeAndLeaf, an R/Bioconductor package that implements a hybrid layout strategy to represent tree diagrams with focus on the leaves. The TreeAndLeaf package combines force-directed graph and tree layout algorithms using a single visualization system, allowing projection of multiple layers of information onto a graph-tree diagram. The Supplementary Information provides two case studies that use breast cancer data from epidemiological and experimental studies. Availability TreeAndLeaf is written in the R language, and is available from the Bioconductor project at http://bioconductor.org/packages/TreeAndLeaf/ (version¿=1.4.2) Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.