Reducing fat intake from our daily diet serves to be an effective way to combat the rising obesity issue worldwide. Hence, reducing fat content in mayonnaise, a high fat food product, is one of the primary trends in the food industry. To date, research on the use of nanocellulose, a new and emerging form of fat mimetic, in mayonnaise formulation remains limited. This study sets out to formulate reduced fat 5%, 15%, and 30% mayonnaise using varying concentration of nanocellulose synthesized from palm pressed fiber followed by a 20‐day stability study. Nanocellulose was synthesized with particle size of 106.0 ± 18.7 nm and zeta potential of −72.5 ± 2.26 mV. It was used as fat mimetic in mayonnaise. Rheological analysis conducted showed that incorporation of nanocellulose into reduced fat mayonnaise formulation was able to counteract the loss of viscosity in mayonnaise caused by fat content reduction. This finding was further supported by the smaller oil droplets that are closely packed in reduced fat mayonnaise formulation when viewed under light microscope. Nonetheless, significant oil droplet coalescence was found in reduced fat mayonnaise formulations during storage period which could lead to loss of viscosity. Taken together, these findings suggest that CNF was able to act as fat mimetic upon formulation of mayonnaise but the same cannot be said during long term storage of mayonnaise. Practical Application We successfully isolated nanocellulose from palm biomass (palm pressed fiber) using green approach and used it as a fat replacer for preparation of 5%, 15%, and 30% reduced fat mayonnaise. A computation study revealed a strong binding affinity of the nanocellulose on the lipase active site essential to inhibit the digestion of fats and oils. Therefore, nanocellulose demonstrated a huge potential to be used as not only as fat replacer but also rheological modifier for the development of reduced fat or vegan foods.
Fractionation is a well‐established process adopted in the fats and oils industries. It involves the separation of low and high melting triacylglycerol under controlled cooling conditions into olein and stearin fractions with distinct chemical and physical properties. Amongst the other vegetable oils, palm oil is one of the most fractionated oils in the past few decades mainly attributed to its semisolid properties. The various fraction of palm oil allows it to be used in different types of food products such as margarine, frying oil, and cocoa butter substitute. In fractionation, proper control of the fractionation conditions is important to produce the fractions with desirable stearin and olein quality. The purpose of this paper is to critically review the fractionation conditions (crystallization temperature, agitation, cooling rate and crystallization time) that affect the yield and quality of the oil produced. Additionally, it also provides the latest updates on the influence of seeding agents (diacylglycerol, monoacylglycerol, hard fat, phytosterol, phospholipid, lecithin, essential oil, sugar, polyglycerol ester, and talc) used in fractionation. This article is useful to provide a fundamental understanding of fractionation to scientists from the industries or academia working in the fats and oils industries. Practical Applications: This paper provides an in‐depth understanding of fractionation particularly on the parameters of fractionation in influencing the quality and yield of the stearin and olein produced. It also for the first time presents the effect of addition of various seeding agents on palm oil fractionation which can help the industry to select the appropriate seeding agents to improve the currently employed fractionation process. Thus, it can act as a guideline for the industry to understand and select the appropriate fractionation conditions when developing a new product using this approach. The fractionation conditions discussed here can also be used as a reference when fractionating other types of fats and oils as most of them share a common background.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.