The epichloae (Epichloë and Neotyphodium species), a monophyletic group of fungi in the family Clavicipitaceae, are systemic symbionts of cool-season grasses (Poaceae subfamily Poöideae). Most epichloae are vertically transmitted in seeds (endophytes), and most produce alkaloids that attack nervous systems of potential herbivores. These protective metabolites include ergot alkaloids and indole-diterpenes (tremorgens), which are active in vertebrate systems, and lolines and peramine, which are more specific against invertebrates. Several Epichloë species have been described which are sexual and capable of horizontal transmission, and most are vertically transmissible also. Asexual epichloae are mainly or exclusively vertically transmitted, and many are interspecific hybrids with genomic contributions from two or three ancestral Epichloë species. Here we employ genome-scale analyses to investigate the origins of biosynthesis gene clusters for ergot alkaloids (EAS), indole-diterpenes (IDT), and lolines (LOL) in 12 hybrid species. In each hybrid, the alkaloid-gene and housekeeping-gene relationships were congruent. Interestingly, hybrids frequently had alkaloid clusters that were rare in their sexual ancestors. Also, in those hybrids that had multiple EAS, IDT or LOL clusters, one cluster lacked some genes, usually for late pathway steps. Possible implications of these findings for the alkaloid profiles and endophyte ecology are discussed.
Cool-season grasses (Poaceae subfamily Poöideae) are an important forage component for livestock in western China, and many have seed-transmitted symbionts of the genus Epichloë, fungal endophytes that are broadly distributed geographically and in many tribes of the Poöideae. Epichloë strains can produce any of several classes of alkaloids, of which ergot alkaloids and indole-diterpenes can be toxic to mammalian and invertebrate herbivores, whereas lolines and peramine are more selective against invertebrates. The authors characterized genotypes and alkaloid profiles of Epichloë bromicola isolates symbiotic with Elymus dahuricus, an important forage grass in rangelands of China. The endophyte was seed-transmitted and occasionally produced fruiting bodies (stromata), but its sexual state was not observed on this host. The genome sequence of E. bromicola isolate E7626 from El. dahuricus in Xinjiang Province revealed gene sets for peramine, ergot alkaloids, and indole-diterpenes. In multiplex polymerase chain reaction (PCR) screens of El. dahuricus-endophyte isolates from Beijing and two locations in Shanxi Province, most were also positive for these genes. Ergovaline and other ergot alkaloids, terpendoles and other indole-diterpenes, and peramine were confirmed in El. dahuricus plants with E. bromicola. The presence of ergot alkaloids and indole-diterpenes in this grass is a potential concern for managers of grazing livestock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.