Based on the three-dimensional (3D) potential theory and finite element method (FEM), this paper proposes a new numerical method for hydroelastic predictions of floating structures in inhomogeneous seabed and wave field conditions. The continuous floating structure is first discretized into rigid modules connected by elastic beams. The motion equations of the entire floating structure are established according to the six degrees of freedom (6DOF) motions of each module by coupling the hydrodynamics of the modules with the structural stiffness matrix of the elastic beams in the frequency domain. By applying different wave excitation forces onto different modules, this discrete-modules-based method then uniquely realizes application of various wave excitation forces onto different modules of the structures in inhomogeneous waves. The hydroelastic responses of a plate and a Wigley hull under an even and uneven seabed using the proposed method are verified against the results from the published model tests and the conventional 3D hydroelastic method. Finally, the effects of inhomogeneous waves on the distributions of the bending moment, shear force and vertical displacements of the freely floating plate are investigated. The results show that the inhomogeneity of waves may induce about 2~3 times increase of the force responses in a specific wave frequency.
Based on the three dimensional potential theory and finite element method (FEM), this paper presented a method for time-domain hydroelastic analysis of a floating bridge in inhomogeneous waves. A floating bridge in both regular and irregular waves, is taken as a numerical example. This method is firstly validated by the comparisons of the results between frequency domain method and presented time domain method under regular wave condition. Then the hydroeleastic responses of the floating bridge in waves with spatially varying significant wave height/peak period are presented, with the purpose to illustrate the feasibility of the proposed method. The primary results at this stage indicate that the inhomogeneity of the waves might affect the structure dynamic responses of the floating bridge in waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.