Ambiguity resolution (AR) is a core technology that helps to speed up convergence time and increase positioning accuracy for precise point positioning (PPP), and the performance of PPP-AR is based on the quality of ambiguity resolution products. Real-time PPP-AR becomes a reality as users can now obtain publicly accessible real-time observable-specific signal bias (OSB) products from the Centre National d’Etudes Spatiales (CNES). Therefore, an analysis of the quality of OSB products and an evaluation of the performance of PPP-AR are required to promote the application of real-time positioning. For a total of 31 days between day of year (DOY) 121 and 151 in 2021, observation data were collected from 90 stations, and the OSB products were used to assess the experiments. As for the quality of the OSB products, the data availability (DA) of the GPS and Galileo satellites was greater than 97%, whereas that of BDS was less than 60%; the maximum fluctuation value (MAX) and standard deviation (STD) of the GPS, Galileo, and BDS satellites were 0.045 and 0.012; 0.081 and 0.028; and 0.292 and 0.085 cycles, respectively. In terms of ambiguity residuals using the OSB products, the wide-lane (WL) residual percentages within ±0.25 cycles for the GPS, Galileo, BDS-2, and BDS-3 systems were more than 92%, and the narrow-lane (NL) residual percentages within ±0.25 cycles for the four systems were 92%, 89%, 79%, and 60%, respectively. With regard to the performance of PPP-AR, the GPS+Galileo solution showed the best performance in the kinematic positioning mode, in which the mean root mean square (RMS) of positioning accuracy was 1.06, 1.27, and 2.85 cm for the east (E), north (N), and up (U) components, respectively, and the mean convergence time reached 9.6 min. In the static positioning mode, the mean convergence times of the GPS-only and GPS+Galileo solutions were 11.4 min and 8.0 min, respectively, and both of their mean RMS for positioning accuracy reached 0.79, 0.95, and 1.48 cm for the E, N, and U components, respectively. However, the addition of BDS did not further enhance the performance of multi-GNSS PPP-AR in either the kinematic or static positioning mode due to the poor quality of the real-time BDS products. More importantly, a prediction method was proposed to avoid re-convergence and to enhance the reliability of PPP-AR in the event of short-time missing real-time OSB products and to improve the positioning accuracy and the ambiguity fixed rate.
Real-time satellite clock offset is a crucial element for real-time precise point positioning (RT-PPP). However, the elapsed time for undifferenced (UD) multi-global navigation satellite system (GNSS) real-time satellite clock offset estimation at each epoch is increased with the growth of stations, which may fall short of real-time application requirements. Therefore, a rapid estimation method for UD multi-GNSS real-time satellite clock offset is proposed to improve the computation efficiency, in which both the dimension of the normal equation (NEQ) and the number of redundant observations are calculated before adjustment; if these two values are larger than the predefined thresholds, the elevation mask is gradually increased until they are less than the predefined thresholds. Then, the clock offset estimation is conducted; this method is called clock offset estimation using partial observations. Totals of 50, 60, 70 and 80 stations are applied to perform experiments. Compared to clock offset estimation using all observations, the elapsed times of clock offset estimation using partial observations can be reduced from 6.80 to 3.10 s, 7.93 to 2.97 s, 12.04 to 3.14 s for 60, 70 and 80 stations, respectively. By using the proposed method, the elapsed time of the clock offset estimation at each epoch is less than 5 s. The estimated clock offset accuracy for GPS, BDS-3, Galileo and GLONASS satellites are better than 0.04, 0.05, 0.03 and 0.16 ns when using the partial observations to estimate clock offset with 50, 60, 70 and 80 stations, respectively. For the multi-GNSS kinematic PPP using the estimated clock offset from 50, 60, 70 and 80 stations with partial observations, the positioning accuracy at 95% confidence level in the east, north and up direction are better than 2.70, 2.20 and 5.60 cm, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.