Oxidized low density lipoprotein (OxLDL) is one of the most important risk factors of cardiovascular disease. Here, we study the impact of OxLDL on endothelial progenitor cells (EPCs) and determine whether OxLDL affects EPCs by an inhibitory effect on endothelial nitric oxide synthase (eNOS). It was found that OxLDL decreased EPC survival and impaired its adhesive, migratory, and tubeformation capacities in a dose-dependent manner. However, all of the detrimental effects of OxLDL were attenuated by pretreatment of EPCs with lectin-like oxidized low density lipoprotein receptor (LOX-1) monoclonal antibody or L-arginine. Western blot analysis revealed that OxLDL dosedependently decreased Akt phosphorylation and eNOS protein expression and increased LOX-1 protein expression. Furthermore, OxLDL caused a decrease in eNOS mRNA expression and an increase in LOX-1 mRNA expression. These data indicate that OxLDL inhibits EPC survival and impairs its function, and this action is attributable to an inhibitory effect on
The successful use of tissue-engineered transplants is hampered by the need for vascularization. Recent advances have made possible the using of stem cells as cell sources for therapeutic angiogenesis, including the vascularization of engineered tissue grafts. The goal of this study was to examine the endothelial potential of human umbilical cord-derived stem (UCDS) cells. UCDS cells were initially characterized and differentiated in an endothelial differentiation medium containing VEGF and bFGF. Differentiation into endothelial cells was determined by acetylated low-density lipoprotein incorporation and expression of endothelial-specific proteins, such as PECAM and CD34. In vivo, the transplanted UCDS cells were sprouting from local injection and differentiated into endothelial cells in a hindlimb ischemia mouse model. These findings indicate the presence of a cell population within the human umbilical cord that exhibits characteristics of endothelial progenitor cells. Therefore, human umbilical cord might represent a source of stem cells useful for therapeutic angiogenesis and re-endothelialization of engineered tissue grafts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.